Answer
Verified
460.8k+ views
Hint: To find the value of $2\log x+2\log {{x}^{2}}+2\log {{x}^{3}}+...+2\log {{x}^{n}}$ , first take 2 common outside and expand each log function using the formula $\log {{x}^{a}}=a\log x$ . From this, we will find $\log x$ to be common. Then, we will use the formula for series $1+2+3+...+n=\dfrac{n\left( n+1 \right)}{2}$ . After a few simplification steps, we will reach the correct option.
Complete step-by-step solution
We need to find the value of $2\log x+2\log {{x}^{2}}+2\log {{x}^{3}}+...+2\log {{x}^{n}}$ .
From the equation, we can observe that 2 is common to each term. So let us take 2 common from this. Hence, the above equation can be written as
$2\left( \log x+\log {{x}^{2}}+\log {{x}^{3}}+...+\log {{x}^{n}} \right)$
Let us now use the formula of logarithm.
We know that $\log {{x}^{a}}=a\log x$ . We can now write the above equation as
$2\left( \log x+2\log x+3\log x+...+n\log x \right)$
We can see that $\log x$ is a common term. Let us take it outside. Hence, the above equation becomes
\[(1+2+3+...+n)2\log x\]
Let us recollect that for a series $1+2+3+...+n=\dfrac{n\left( n+1 \right)}{2}$ . Now, let us apply this in the above equation. Thus, the above equation becomes
$\left( \dfrac{n\left( n+1 \right)}{2} \right)2\log x$
We can now cancel 2 from numerator and denominator. We will get
$n\left( n+1 \right)\log x$
Hence, the correct option is B.
Note: To solve this problem, the logarithmic rules must be known. One may make mistakes when writing the formula $\log {{x}^{a}}=a\log x$ as $\log {{x}^{a}}=\log ax$ . Also the general series equations must be known. You may make mistake when writing the formula $1+2+3+...+n=\dfrac{n\left( n+1 \right)}{2}$ as
$1+2+3+...+n=\dfrac{n\left( n-1 \right)}{2}$. One important point to keep in mind when solving these kinds of problems is that try to take the common terms outside from the beginning itself.
Complete step-by-step solution
We need to find the value of $2\log x+2\log {{x}^{2}}+2\log {{x}^{3}}+...+2\log {{x}^{n}}$ .
From the equation, we can observe that 2 is common to each term. So let us take 2 common from this. Hence, the above equation can be written as
$2\left( \log x+\log {{x}^{2}}+\log {{x}^{3}}+...+\log {{x}^{n}} \right)$
Let us now use the formula of logarithm.
We know that $\log {{x}^{a}}=a\log x$ . We can now write the above equation as
$2\left( \log x+2\log x+3\log x+...+n\log x \right)$
We can see that $\log x$ is a common term. Let us take it outside. Hence, the above equation becomes
\[(1+2+3+...+n)2\log x\]
Let us recollect that for a series $1+2+3+...+n=\dfrac{n\left( n+1 \right)}{2}$ . Now, let us apply this in the above equation. Thus, the above equation becomes
$\left( \dfrac{n\left( n+1 \right)}{2} \right)2\log x$
We can now cancel 2 from numerator and denominator. We will get
$n\left( n+1 \right)\log x$
Hence, the correct option is B.
Note: To solve this problem, the logarithmic rules must be known. One may make mistakes when writing the formula $\log {{x}^{a}}=a\log x$ as $\log {{x}^{a}}=\log ax$ . Also the general series equations must be known. You may make mistake when writing the formula $1+2+3+...+n=\dfrac{n\left( n+1 \right)}{2}$ as
$1+2+3+...+n=\dfrac{n\left( n-1 \right)}{2}$. One important point to keep in mind when solving these kinds of problems is that try to take the common terms outside from the beginning itself.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE