Answer
Verified
468.9k+ views
Hint: If the compound has an unpaired electron then it is paramagnetic, and if it has all paired electrons then it is diamagnetic. We can calculate the bond order of the compound by dividing the sum of electrons in bonding orbital and antibonding orbital with 2.
Complete answer:
Let us study all the options one by one:
(a)- Both are having $1-\sigma $ and $1-\pi $ bond
${{B}_{2}}$ molecule has a single bond between both boron atoms. Hence, it has a $\sigma $ bond.
In ${{C}_{2}}$ molecules there are 2 bonds. One is $\sigma $ bond and the other is $\pi $ bond.
Hence, this option is incorrect.
(b)- Both are having the same bond length.
The bond length of the molecule is related to the bond order of the molecule. Bond length is inversely proportional to the bond order.
In ${{B}_{2}}, $ molecule the bond order is 1 and the bond order of ${{C}_{2}}$ is 2. Hence, the bond length of ${{C}_{2}}$ is shorter than ${{B}_{2}}$.
Hence, this option is also incorrect.
(c)- Both are having different bond orders.
The bond order of the compound is calculated by dividing the sum of electrons in bonding orbital and antibonding orbital with 2.
${{B}_{2}}$ has 6 electrons in its outermost shell . Configuration is : $\sigma 2{{s}^{2}}\text{ }\sigma *2{{s}^{2}}\text{ }\pi 2{{p}_{x}}^{1}\text{ }\pi 2{{p}_{y}}^{1}$
Bond order = $\dfrac{b.o-a.b.o}{2}=\dfrac{4-2}{2}=1$
${{C}_{2}}$ has 8 electrons in its outermost shell . Configuration is: $\sigma 2{{s}^{2}}\text{ }\sigma *2{{s}^{2}}\text{ }\pi 2{{p}_{x}}^{2}\text{ }\pi 2{{p}_{y}}^{2}$
Bond order = $\dfrac{b.o-a.b.o}{2}=\dfrac{6-2}{2}=2$
Hence, this option is correct.
(d)- ${{B}_{2}}$ is paramagnetic and ${{C}_{2}}$ is diamagnetic in nature.
${{B}_{2}}$ has two unpaired electrons hence, it is paramagnetic. ${{C}_{2}}$ has all paired electrons hence, it is diamagnetic.
Hence, this is also correct.
So, the correct answer is “Option C and D”.
Note: The orbital $\text{ }\pi 2{{p}_{x}}\text{ and }\pi 2{{p}_{y}}$ gets degenerate after mixing hence they have same energy. So, if there are 2 electrons left each of them gets one-one electron each after that only pairing is done.
Complete answer:
Let us study all the options one by one:
(a)- Both are having $1-\sigma $ and $1-\pi $ bond
${{B}_{2}}$ molecule has a single bond between both boron atoms. Hence, it has a $\sigma $ bond.
In ${{C}_{2}}$ molecules there are 2 bonds. One is $\sigma $ bond and the other is $\pi $ bond.
Hence, this option is incorrect.
(b)- Both are having the same bond length.
The bond length of the molecule is related to the bond order of the molecule. Bond length is inversely proportional to the bond order.
In ${{B}_{2}}, $ molecule the bond order is 1 and the bond order of ${{C}_{2}}$ is 2. Hence, the bond length of ${{C}_{2}}$ is shorter than ${{B}_{2}}$.
Hence, this option is also incorrect.
(c)- Both are having different bond orders.
The bond order of the compound is calculated by dividing the sum of electrons in bonding orbital and antibonding orbital with 2.
${{B}_{2}}$ has 6 electrons in its outermost shell . Configuration is : $\sigma 2{{s}^{2}}\text{ }\sigma *2{{s}^{2}}\text{ }\pi 2{{p}_{x}}^{1}\text{ }\pi 2{{p}_{y}}^{1}$
Bond order = $\dfrac{b.o-a.b.o}{2}=\dfrac{4-2}{2}=1$
${{C}_{2}}$ has 8 electrons in its outermost shell . Configuration is: $\sigma 2{{s}^{2}}\text{ }\sigma *2{{s}^{2}}\text{ }\pi 2{{p}_{x}}^{2}\text{ }\pi 2{{p}_{y}}^{2}$
Bond order = $\dfrac{b.o-a.b.o}{2}=\dfrac{6-2}{2}=2$
Hence, this option is correct.
(d)- ${{B}_{2}}$ is paramagnetic and ${{C}_{2}}$ is diamagnetic in nature.
${{B}_{2}}$ has two unpaired electrons hence, it is paramagnetic. ${{C}_{2}}$ has all paired electrons hence, it is diamagnetic.
Hence, this is also correct.
So, the correct answer is “Option C and D”.
Note: The orbital $\text{ }\pi 2{{p}_{x}}\text{ and }\pi 2{{p}_{y}}$ gets degenerate after mixing hence they have same energy. So, if there are 2 electrons left each of them gets one-one electron each after that only pairing is done.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers