Answer
Verified
500.7k+ views
Hint: Indeterminate form is any form that can’t be evaluated, like $\dfrac{0}{0},\dfrac{\infty }{\infty
},0.\infty ,\infty .0$ etc.
Now, firstly we have to know what indeterminate form;
After putting a limit, we see if the equation forms any of the forms mentioned below.
$\dfrac{0}{0},\dfrac{\infty }{\infty },0.\infty ,{{0}^{{}^\0}},{{\infty }^{{}^\0 }},{{1}^{\infty }},\infty -
\infty $ are all called indeterminate forms, because they can’t be evaluated to a number.
We will check one by one:
(a) $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{x}^{3}}-{{a}^{3}}}{x-a}$
Now, to see what form we get on substituting the limiting value of $x$, let’s actually do so. So, we’re
going to put $x=a$ in the limit given to us above. Doing so, we get :
$\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{x}^{3}}-{{a}^{3}}}{x-a}=\dfrac{{{a}^{3}}-{{a}^{3}}}{a-
a}=\dfrac{0}{0}$
Since $\dfrac{0}{0}$ falls under the category of an indeterminate form, this limit is in the indeterminate
form.
(b) $\underset{x\to 0}{\mathop{\lim }}\,\sin x\text{ }\cos \text{ec }x$
Similarly, let’s substitute for $x$ or put $x=0$, and see what form we get.
Therefore, $\underset{x\to 0}{\mathop{\lim }}\,\sin x\cos ecx=\sin (0)\cos ec(0)=0.\dfrac{1}{0}=0.\infty $
Since the form we got here is $0.\infty $, this limit is also an indeterminate form.
(c) $\underset{x\to 0}{\mathop{\lim }}\,{{x}^{x}}$
Substituting for $x$ or putting $x=0$ in the limit, we get :
$\underset{x\to 0}{\mathop{\lim }}\,{{x}^{x}}={{0}^{0}}$
Since it does fall in the category of indeterminate forms, we can safely say that this limit also evaluates
to an indeterminate limit.
(d) $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{0}{x}$
Now, in this question, we can easily just substitute for $x$ and say that the limit gives an indeterminate
form, but what we also have to see is that the expression can be further simplified without putting the
value of $x$, and it will remain the same no matter what value of $x$ you put. Since, $\dfrac{0}{x}=0$
for any value of $x$, this limit will always be equal to $0$, and $0$ is not an indeterminate form.
Hence, this is the limit which doesn’t give an indeterminate form.
Therefore, option (d) is correct.
Note: Make sure to be well versed with the indeterminate forms, and if you get confused before
substituting for $x$, then try substituting for a different value of $x$ and see if the limit’s value changes.
If it doesn’t, then the limit is defined. If it does, and gives a defined value on changing the value of $x$
substituted, then the limit actually is undefined at the limiting value given to us, in the question. For
example, in option d, no matter what value of $x$ we used, the limit would always give us $0$,
however, in option a, if we put $x=2a$ for example, then we’d definitely get a defined limit. Thus, the
limit for option a and the other options changed when we changed the limiting value of $x$, and hence,
they were essentially indeterminant at the limiting value given to us.
},0.\infty ,\infty .0$ etc.
Now, firstly we have to know what indeterminate form;
After putting a limit, we see if the equation forms any of the forms mentioned below.
$\dfrac{0}{0},\dfrac{\infty }{\infty },0.\infty ,{{0}^{{}^\0}},{{\infty }^{{}^\0 }},{{1}^{\infty }},\infty -
\infty $ are all called indeterminate forms, because they can’t be evaluated to a number.
We will check one by one:
(a) $\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{x}^{3}}-{{a}^{3}}}{x-a}$
Now, to see what form we get on substituting the limiting value of $x$, let’s actually do so. So, we’re
going to put $x=a$ in the limit given to us above. Doing so, we get :
$\underset{x\to a}{\mathop{\lim }}\,\dfrac{{{x}^{3}}-{{a}^{3}}}{x-a}=\dfrac{{{a}^{3}}-{{a}^{3}}}{a-
a}=\dfrac{0}{0}$
Since $\dfrac{0}{0}$ falls under the category of an indeterminate form, this limit is in the indeterminate
form.
(b) $\underset{x\to 0}{\mathop{\lim }}\,\sin x\text{ }\cos \text{ec }x$
Similarly, let’s substitute for $x$ or put $x=0$, and see what form we get.
Therefore, $\underset{x\to 0}{\mathop{\lim }}\,\sin x\cos ecx=\sin (0)\cos ec(0)=0.\dfrac{1}{0}=0.\infty $
Since the form we got here is $0.\infty $, this limit is also an indeterminate form.
(c) $\underset{x\to 0}{\mathop{\lim }}\,{{x}^{x}}$
Substituting for $x$ or putting $x=0$ in the limit, we get :
$\underset{x\to 0}{\mathop{\lim }}\,{{x}^{x}}={{0}^{0}}$
Since it does fall in the category of indeterminate forms, we can safely say that this limit also evaluates
to an indeterminate limit.
(d) $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{0}{x}$
Now, in this question, we can easily just substitute for $x$ and say that the limit gives an indeterminate
form, but what we also have to see is that the expression can be further simplified without putting the
value of $x$, and it will remain the same no matter what value of $x$ you put. Since, $\dfrac{0}{x}=0$
for any value of $x$, this limit will always be equal to $0$, and $0$ is not an indeterminate form.
Hence, this is the limit which doesn’t give an indeterminate form.
Therefore, option (d) is correct.
Note: Make sure to be well versed with the indeterminate forms, and if you get confused before
substituting for $x$, then try substituting for a different value of $x$ and see if the limit’s value changes.
If it doesn’t, then the limit is defined. If it does, and gives a defined value on changing the value of $x$
substituted, then the limit actually is undefined at the limiting value given to us, in the question. For
example, in option d, no matter what value of $x$ we used, the limit would always give us $0$,
however, in option a, if we put $x=2a$ for example, then we’d definitely get a defined limit. Thus, the
limit for option a and the other options changed when we changed the limiting value of $x$, and hence,
they were essentially indeterminant at the limiting value given to us.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE