Answer
Verified
498.6k+ views
Hint: The given question is related to quadratic equations. Try to recall the formulae related to the relation between the coefficients and sum and product of the roots of a quadratic equation.
Complete step-by-step answer:
Before proceeding with the solution, we must know about the relation between the coefficients and sum and product of the roots of the quadratic equation given by \[a{{x}^{2}}+bx+c=0\] .
We know, the roots of the equation \[a{{x}^{2}}+bx+c=0\] are given by the quadratic formula $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ .
Let $\alpha $ and $\beta $ be the roots of the equation. So, $\alpha =\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a}$ and $\beta =\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a}$. The sum of the roots is given as $\alpha +\beta =\left( \dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a} \right)+\left( \dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a} \right)=\dfrac{-2b}{2a}=\dfrac{-b}{a}$ .
So, the sum of the roots is related to the coefficients as $\alpha +\beta =\dfrac{-b}{a}$ .
The product of the roots is given as $\alpha \beta =\left( \dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a} \right)\left( \dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a} \right)=\dfrac{{{b}^{2}}-\left( {{b}^{2}}-4ac \right)}{4{{a}^{2}}}=\dfrac{c}{a}$ .
So, the product of the roots is related to the coefficients as $\alpha \beta =\dfrac{c}{a}$ .
Now, we have \[a{{x}^{2}}+bx+c=0\]. On dividing the equation by $a$ , we get ${{x}^{2}}+\dfrac{b}{a}x+\dfrac{c}{a}=0.....(i)$.
We have $\alpha +\beta =\dfrac{-b}{a}$ and $\alpha \beta =\dfrac{c}{a}$ . So, we can rewrite equation \[(i)\] with coefficients in the form sum and product of roots as ${{x}^{2}}-\left( \alpha +\beta \right)x+\alpha \beta =0$.
Now, coming to the question , we are given the zeros of a quadratic polynomial as $1$ and $-2$. So, the sum of zeroes is equal to $-2+1=-1$ and the product of zeroes is equal to $-2\times 1=-2$ .
Hence, the quadratic polynomial having zeros $1$ and $-2$ is given as ${{x}^{2}}+x-2$ .
Hence , option C. is the correct answer.
Note: The quadratic equation with coefficients in the form sum and product of roots is given as ${{x}^{2}}-\left( \alpha +\beta \right)x+\alpha \beta =0$ and not ${{x}^{2}}+\left( \alpha +\beta \right)x+\alpha \beta =0$. Students often get confused and make a mistake. Such mistakes should be avoided as they can lead to wrong answers.
Complete step-by-step answer:
Before proceeding with the solution, we must know about the relation between the coefficients and sum and product of the roots of the quadratic equation given by \[a{{x}^{2}}+bx+c=0\] .
We know, the roots of the equation \[a{{x}^{2}}+bx+c=0\] are given by the quadratic formula $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ .
Let $\alpha $ and $\beta $ be the roots of the equation. So, $\alpha =\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a}$ and $\beta =\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a}$. The sum of the roots is given as $\alpha +\beta =\left( \dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a} \right)+\left( \dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a} \right)=\dfrac{-2b}{2a}=\dfrac{-b}{a}$ .
So, the sum of the roots is related to the coefficients as $\alpha +\beta =\dfrac{-b}{a}$ .
The product of the roots is given as $\alpha \beta =\left( \dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a} \right)\left( \dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a} \right)=\dfrac{{{b}^{2}}-\left( {{b}^{2}}-4ac \right)}{4{{a}^{2}}}=\dfrac{c}{a}$ .
So, the product of the roots is related to the coefficients as $\alpha \beta =\dfrac{c}{a}$ .
Now, we have \[a{{x}^{2}}+bx+c=0\]. On dividing the equation by $a$ , we get ${{x}^{2}}+\dfrac{b}{a}x+\dfrac{c}{a}=0.....(i)$.
We have $\alpha +\beta =\dfrac{-b}{a}$ and $\alpha \beta =\dfrac{c}{a}$ . So, we can rewrite equation \[(i)\] with coefficients in the form sum and product of roots as ${{x}^{2}}-\left( \alpha +\beta \right)x+\alpha \beta =0$.
Now, coming to the question , we are given the zeros of a quadratic polynomial as $1$ and $-2$. So, the sum of zeroes is equal to $-2+1=-1$ and the product of zeroes is equal to $-2\times 1=-2$ .
Hence, the quadratic polynomial having zeros $1$ and $-2$ is given as ${{x}^{2}}+x-2$ .
Hence , option C. is the correct answer.
Note: The quadratic equation with coefficients in the form sum and product of roots is given as ${{x}^{2}}-\left( \alpha +\beta \right)x+\alpha \beta =0$ and not ${{x}^{2}}+\left( \alpha +\beta \right)x+\alpha \beta =0$. Students often get confused and make a mistake. Such mistakes should be avoided as they can lead to wrong answers.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE