Answer
Verified
112.2k+ views
Hint: We have to find out the hybridisation, which means when different atomic orbitals are combined having different energies to give the equivalent orbitals. Here we will see the combination of one d orbital, one s orbital and two p orbitals to give the \[ds{{p}^{2}}\] hybridisation and square planar geometry.
Step by step solution:
- We will find the electronic configuration of Ni in the compound ${{\left[ Ni{{\left( CN \right)}_{4}} \right]}^{2-}}$,
- The electronic configuration of Ni is-$1{{s}^{2}}2{{s}^{2}}2{{p}^{6}}3{{s}^{2}}3{{p}^{6}}4{{s}^{2}}3{{d}^{8}}$
- And the electronic configuration of \[N{{i}^{2+}}\]will be-\[1{{s}^{2}}2{{s}^{2}}2{{p}^{6}}3{{s}^{2}}3{{p}^{6}}4{{s}^{0}}3{{d}^{8}}\]
- We can represent the valence bond representation as:
- Here we have filled the 8 electrons of \[N{{i}^{2+}}\] in 3d orbitals, the two unpaired electrons in the ground state of ion, will pair up in the excited state , due to the pairing energy supplied by the formation of strong bonds in the complex.
- This makes one of the 3d orbitals empty. By this we can see above that there are no unpaired electrons and hence the compound will be diamagnetic.
- Here we can see that 4 $C{{N}^{-}}$ ions will form a strong bond in the complex.
- And here the central metal ion undergoes \[ds{{p}^{2}}\] hybridisation and the complex ion takes square planar geometry.
- Therefore, we can conclude that the correct option is(d) that is ${{\left[ Ni{{\left( CN \right)}_{4}} \right]}^{2-}}$ shows \[ds{{p}^{2}}\] hybridisation and a square planar geometry.
- As we have seen from the above valence bond representation that there are no unpaired electrons present and hence it is diamagnetic, we can also say that it has zero magnetic moment.
Note:
- In presence of any strong field ligand like $C{{N}^{-}}$ , all the electrons are paired up, and in the presence of weak field ligands electrons are not paired up.
- We can calculate the magnetic moment, hybridisation, geometry, and magnetic nature from the valence bond representation.
Step by step solution:
- We will find the electronic configuration of Ni in the compound ${{\left[ Ni{{\left( CN \right)}_{4}} \right]}^{2-}}$,
- The electronic configuration of Ni is-$1{{s}^{2}}2{{s}^{2}}2{{p}^{6}}3{{s}^{2}}3{{p}^{6}}4{{s}^{2}}3{{d}^{8}}$
- And the electronic configuration of \[N{{i}^{2+}}\]will be-\[1{{s}^{2}}2{{s}^{2}}2{{p}^{6}}3{{s}^{2}}3{{p}^{6}}4{{s}^{0}}3{{d}^{8}}\]
- We can represent the valence bond representation as:
- Here we have filled the 8 electrons of \[N{{i}^{2+}}\] in 3d orbitals, the two unpaired electrons in the ground state of ion, will pair up in the excited state , due to the pairing energy supplied by the formation of strong bonds in the complex.
- This makes one of the 3d orbitals empty. By this we can see above that there are no unpaired electrons and hence the compound will be diamagnetic.
- Here we can see that 4 $C{{N}^{-}}$ ions will form a strong bond in the complex.
- And here the central metal ion undergoes \[ds{{p}^{2}}\] hybridisation and the complex ion takes square planar geometry.
- Therefore, we can conclude that the correct option is(d) that is ${{\left[ Ni{{\left( CN \right)}_{4}} \right]}^{2-}}$ shows \[ds{{p}^{2}}\] hybridisation and a square planar geometry.
- As we have seen from the above valence bond representation that there are no unpaired electrons present and hence it is diamagnetic, we can also say that it has zero magnetic moment.
Note:
- In presence of any strong field ligand like $C{{N}^{-}}$ , all the electrons are paired up, and in the presence of weak field ligands electrons are not paired up.
- We can calculate the magnetic moment, hybridisation, geometry, and magnetic nature from the valence bond representation.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
JEE Main 2023 (January 25th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics
NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction
NCERT Solutions for Class 11 Chemistry Chapter 8 Organic Chemistry
NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium
Equilibrium Class 11 Notes: CBSE Chemistry Chapter 6
Thermodynamics Class 11 Notes: CBSE Chapter 5