Which of the following will exhibit maximum ionic conductivity?
A. ${{K}_{4}}[Fe{{(CN)}_{6}}]$
B. $[Co{{(N{{H}_{3}})}_{6}}]C{{l}_{3}}$
C. $[Cu{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$
D. $[Ni{{(CO)}_{4}}]$
Answer
Verified
435.3k+ views
Hint: The molar conductivity of a coordination compound is going to depend on the number of ions produced by the respective coordination compound when it is dissolved in water. If the coordination compound forms a high number of ions after adding to the water then the molar conductivity of the respective compound will be high.
Complete step by step answer:
- In the question, it is asked to find the coordination compound which exhibits maximum molar conductivity among the given options.
- Coming to the given options. Option A, ${{K}_{4}}[Fe{{(CN)}_{6}}]$.
-The compound ${{K}_{4}}[Fe{{(CN)}_{6}}]$ dissolves in water and forms the ions and we can see them in the below chemical equation.
\[{{K}_{4}}[Fe{{(CN)}_{6}}]\to 4{{K}^{+}}+{{[Fe{{(CN)}_{6}}]}^{4-}}\]
- In the above chemical equation we can see clearly that there are five ions formed after dissociation of the compound ${{K}_{4}}[Fe{{(CN)}_{6}}]$.
- Coming to option B, $[Co{{(N{{H}_{3}})}_{6}}]C{{l}_{3}}$.
- The compound $[Co{{(N{{H}_{3}})}_{6}}]C{{l}_{3}}$ dissolves in water and forms the ions and we can see them in the below chemical equation.
\[[Co{{(N{{H}_{3}})}_{6}}]C{{l}_{3}}\to {{[Co{{(N{{H}_{3}})}_{6}}]}^{3+}}+3C{{l}^{-}}\]
- In the above chemical equation we can see clearly that there are four ions are formed after dissociation of the compound $[Co{{(N{{H}_{3}})}_{6}}]C{{l}_{3}}$.
- Coming to the option C, $[Cu{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$.
- The compound $[Cu{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$ dissolves in water and forms the ions and we can see them in the below chemical equation.
\[[Cu{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}\to {{[Cu{{(N{{H}_{3}})}_{4}}]}^{2+}}+2C{{l}^{-}}\]
- In the above chemical equation we can see clearly that there are three ions are formed after dissociation of the compound $[Cu{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$.
- Coming to the option D, $[Ni{{(CO)}_{4}}]$. It does not dissolve in water due to the absence of the polarity nature then it will be a single molecule in water.
- There the compound A, ${{K}_{4}}[Fe{{(CN)}_{6}}]$ shows maximum molar conductivity due to the formation of 5 ions when dissolved in water. So, the correct answer is “Option A”.
Note: The number of ions formed by a coordination compound is going to decide the molar conductivity of the particular coordination compound. The number of ions formed by a coordination compound is directly proportional to the molar conductivity of the solution.
Complete step by step answer:
- In the question, it is asked to find the coordination compound which exhibits maximum molar conductivity among the given options.
- Coming to the given options. Option A, ${{K}_{4}}[Fe{{(CN)}_{6}}]$.
-The compound ${{K}_{4}}[Fe{{(CN)}_{6}}]$ dissolves in water and forms the ions and we can see them in the below chemical equation.
\[{{K}_{4}}[Fe{{(CN)}_{6}}]\to 4{{K}^{+}}+{{[Fe{{(CN)}_{6}}]}^{4-}}\]
- In the above chemical equation we can see clearly that there are five ions formed after dissociation of the compound ${{K}_{4}}[Fe{{(CN)}_{6}}]$.
- Coming to option B, $[Co{{(N{{H}_{3}})}_{6}}]C{{l}_{3}}$.
- The compound $[Co{{(N{{H}_{3}})}_{6}}]C{{l}_{3}}$ dissolves in water and forms the ions and we can see them in the below chemical equation.
\[[Co{{(N{{H}_{3}})}_{6}}]C{{l}_{3}}\to {{[Co{{(N{{H}_{3}})}_{6}}]}^{3+}}+3C{{l}^{-}}\]
- In the above chemical equation we can see clearly that there are four ions are formed after dissociation of the compound $[Co{{(N{{H}_{3}})}_{6}}]C{{l}_{3}}$.
- Coming to the option C, $[Cu{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$.
- The compound $[Cu{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$ dissolves in water and forms the ions and we can see them in the below chemical equation.
\[[Cu{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}\to {{[Cu{{(N{{H}_{3}})}_{4}}]}^{2+}}+2C{{l}^{-}}\]
- In the above chemical equation we can see clearly that there are three ions are formed after dissociation of the compound $[Cu{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$.
- Coming to the option D, $[Ni{{(CO)}_{4}}]$. It does not dissolve in water due to the absence of the polarity nature then it will be a single molecule in water.
- There the compound A, ${{K}_{4}}[Fe{{(CN)}_{6}}]$ shows maximum molar conductivity due to the formation of 5 ions when dissolved in water. So, the correct answer is “Option A”.
Note: The number of ions formed by a coordination compound is going to decide the molar conductivity of the particular coordination compound. The number of ions formed by a coordination compound is directly proportional to the molar conductivity of the solution.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE