Answer
Verified
391.8k+ views
Hint: In this problem, we have to find the irrational number from the given options. We know that rational numbers are any numbers which can be written in the form of \[\dfrac{p}{q},q\ne 0\]. We also know that an irrational number is a non-terminating or non-repeating number and has decimal expansion. Here we can check the given root values for irrational numbers to get the required answer.
Complete step-by-step answer:
Here we have to find the irrational number from the following options.
A. \[\sqrt{2}\]
B. 0
C. \[\sqrt{4}\]
D. \[\sqrt{16}\]
We can now check the root value of each option.
We can now take the first option, we get
\[\Rightarrow \sqrt{2}=1.41421356...\]
We can see that the value of \[\sqrt{2}\] is non-termination and has a decimal expansion, hence it is an irrational number.
We can see that 0 is a rational number, where in the form of \[\dfrac{p}{q},q\ne 0\], such that p = 0.
We can now check the third and fourth option, we get
\[\begin{align}
& \Rightarrow \sqrt{4}=2 \\
& \Rightarrow \sqrt{16}=4 \\
\end{align}\]
Here, we can see that the last two options are rational numbers.
So, the correct answer is “Option A”.
Note: We should always remember that rational numbers are any numbers which can be written in the form of \[\dfrac{p}{q},q\ne 0\]. We also know that an irrational number is a non-terminating or non-repeating number and has decimal expansion. We should also remember that 0 is a rational number, where in the form of \[\dfrac{p}{q},q\ne 0\], such that p = 0.
Complete step-by-step answer:
Here we have to find the irrational number from the following options.
A. \[\sqrt{2}\]
B. 0
C. \[\sqrt{4}\]
D. \[\sqrt{16}\]
We can now check the root value of each option.
We can now take the first option, we get
\[\Rightarrow \sqrt{2}=1.41421356...\]
We can see that the value of \[\sqrt{2}\] is non-termination and has a decimal expansion, hence it is an irrational number.
We can see that 0 is a rational number, where in the form of \[\dfrac{p}{q},q\ne 0\], such that p = 0.
We can now check the third and fourth option, we get
\[\begin{align}
& \Rightarrow \sqrt{4}=2 \\
& \Rightarrow \sqrt{16}=4 \\
\end{align}\]
Here, we can see that the last two options are rational numbers.
So, the correct answer is “Option A”.
Note: We should always remember that rational numbers are any numbers which can be written in the form of \[\dfrac{p}{q},q\ne 0\]. We also know that an irrational number is a non-terminating or non-repeating number and has decimal expansion. We should also remember that 0 is a rational number, where in the form of \[\dfrac{p}{q},q\ne 0\], such that p = 0.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE