Answer
Verified
501.6k+ views
Hint- Here, we will be using distance formula.
Given, we have two points A$\left( {2,3} \right)$ and B$\left( { - 4,1} \right)$.
Since, we know that any point on the y-axis will have its x-coordinate as zero.
Let P$\left( {0,y} \right)$be that point that will lie on the y-axis.
We know that according to distance formula, the distance between any two points ${\text{A}}\left( {a,b} \right)$ and $B\left( {c,d} \right)$is given by $d = \sqrt {{{\left( {c - a} \right)}^2} + {{\left( {d - b} \right)}^2}} $
Also given that the point P$\left( {0,y} \right)$is equidistant from the points A$\left( {2,3} \right)$ and B$\left( { - 4,1} \right)$ which means that the distances AP and BP are equal.
i.e. $
{\text{AP}} = {\text{BP}} \Rightarrow \sqrt {{{\left( {0 - 2} \right)}^2} + {{\left( {y - 3} \right)}^2}} = \sqrt {{{\left[ {0 - \left( { - 4} \right)} \right]}^2} + {{\left( {y - 1} \right)}^2}} \\
\Rightarrow \sqrt {4 + {y^2} + 9 - 6y} = \sqrt {16 + {y^2} + 1 - 2y} \\
$
Now squaring both the sides of above equation, we get
$
\Rightarrow 4 + {y^2} + 9 - 6y = 16 + {y^2} + 1 - 2y \Rightarrow 6y - 2y = 4 + 9 - 1 - 16 \\
\Rightarrow 4y = - 4 \Rightarrow y = - 1 \\
$
Therefore, the required point on the y-axis is P$\left( {0, - 1} \right)$.
Note- In this problem if the point which is equidistant from the two given points instead of lying on y-axis, lies on x-axis then the coordinates of the required point would have been assumed as P$\left( {x,0} \right)$ because any point lying on the x-axis have its y coordinate as zero.
Given, we have two points A$\left( {2,3} \right)$ and B$\left( { - 4,1} \right)$.
Since, we know that any point on the y-axis will have its x-coordinate as zero.
Let P$\left( {0,y} \right)$be that point that will lie on the y-axis.
We know that according to distance formula, the distance between any two points ${\text{A}}\left( {a,b} \right)$ and $B\left( {c,d} \right)$is given by $d = \sqrt {{{\left( {c - a} \right)}^2} + {{\left( {d - b} \right)}^2}} $
Also given that the point P$\left( {0,y} \right)$is equidistant from the points A$\left( {2,3} \right)$ and B$\left( { - 4,1} \right)$ which means that the distances AP and BP are equal.
i.e. $
{\text{AP}} = {\text{BP}} \Rightarrow \sqrt {{{\left( {0 - 2} \right)}^2} + {{\left( {y - 3} \right)}^2}} = \sqrt {{{\left[ {0 - \left( { - 4} \right)} \right]}^2} + {{\left( {y - 1} \right)}^2}} \\
\Rightarrow \sqrt {4 + {y^2} + 9 - 6y} = \sqrt {16 + {y^2} + 1 - 2y} \\
$
Now squaring both the sides of above equation, we get
$
\Rightarrow 4 + {y^2} + 9 - 6y = 16 + {y^2} + 1 - 2y \Rightarrow 6y - 2y = 4 + 9 - 1 - 16 \\
\Rightarrow 4y = - 4 \Rightarrow y = - 1 \\
$
Therefore, the required point on the y-axis is P$\left( {0, - 1} \right)$.
Note- In this problem if the point which is equidistant from the two given points instead of lying on y-axis, lies on x-axis then the coordinates of the required point would have been assumed as P$\left( {x,0} \right)$ because any point lying on the x-axis have its y coordinate as zero.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE