Answer
Verified
499.5k+ views
Hint: Find if the given sequence is in A.P. or G.P. and equate the general term formula with the given term to find ‘n’.
The given sequence is 72, 70, 68, 66,….
First, we need to find if it is in A.P. (Arithmetic Progression) or G.P. (Geometric Progression)
To find out if the given sequence is in A.P, we need to check if the common difference between two consecutive terms in the sequence is the same for all numbers given in the sequence.
Common difference is found by taking any term and subtracting the previous term from it. We need to check the common difference for more than 1 set of consecutive numbers in the sequence. It is denoted as‘d’. If the common difference is the same throughout, then the sequence is in A.P. (Arithmetic Progression).
In a G.P. The first term is denoted as ‘a’ and the common ratio is denoted as ‘r’. Common ratio is defined as the ratio between two consecutive terms in the G.P. It will be the same for any two consecutive terms in the G.P.
So, first let us check if it is an A.P.
d=70-72=-2
d=68-70=-2
a=72, d=-2 …(1)
Since, the common difference is the same, it is an A.P.
The formula to find the general term in an A.P. is given by
$Tn = a + (n - 1)d$ …(2)
We are asked to find the value of ‘n’ for the term 40. So,
$Tn = 40$ …(3)
Substitute (1), (2) in (3) to find the value of ‘n’
$
Tn = a + (n - 1)d \\
40 = 72 + (n - 1)( - 2) \\
- 2n + 2 = - 32 \\
- 2n = - 34 \\
n = 17 \\
$
We get the value of ‘n’ as 17. So, 40 is the 17th term in the given A.P.
Note: Determine what kind of progression it is. The general term of an A.P. and G.P. must be memorized by the students to solve these kinds of problems quickly and the calculation part must be done carefully to avoid mistakes.
The given sequence is 72, 70, 68, 66,….
First, we need to find if it is in A.P. (Arithmetic Progression) or G.P. (Geometric Progression)
To find out if the given sequence is in A.P, we need to check if the common difference between two consecutive terms in the sequence is the same for all numbers given in the sequence.
Common difference is found by taking any term and subtracting the previous term from it. We need to check the common difference for more than 1 set of consecutive numbers in the sequence. It is denoted as‘d’. If the common difference is the same throughout, then the sequence is in A.P. (Arithmetic Progression).
In a G.P. The first term is denoted as ‘a’ and the common ratio is denoted as ‘r’. Common ratio is defined as the ratio between two consecutive terms in the G.P. It will be the same for any two consecutive terms in the G.P.
So, first let us check if it is an A.P.
d=70-72=-2
d=68-70=-2
a=72, d=-2 …(1)
Since, the common difference is the same, it is an A.P.
The formula to find the general term in an A.P. is given by
$Tn = a + (n - 1)d$ …(2)
We are asked to find the value of ‘n’ for the term 40. So,
$Tn = 40$ …(3)
Substitute (1), (2) in (3) to find the value of ‘n’
$
Tn = a + (n - 1)d \\
40 = 72 + (n - 1)( - 2) \\
- 2n + 2 = - 32 \\
- 2n = - 34 \\
n = 17 \\
$
We get the value of ‘n’ as 17. So, 40 is the 17th term in the given A.P.
Note: Determine what kind of progression it is. The general term of an A.P. and G.P. must be memorized by the students to solve these kinds of problems quickly and the calculation part must be done carefully to avoid mistakes.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE