Answer
Verified
498.6k+ views
Hint: The given problem is related to algebraic identities. $-\left( {{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}} \right)$ is of the form \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}\] and here \[a+b+c=0\]. So, the identity \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=0\], when \[a+b+c=0\], is applicable here.
Complete step-by-step answer:
Let’s consider three numbers $a,b$ and $c$, such that \[a+b+c=0\]. We have to find the value of \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}\].
We know \[{{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right)\]. We can write \[{{\left( a+b+c \right)}^{3}}\] as \[{{\left( a+b+c \right)}^{2}}\left( a+b+c \right)\].
So, ${{\left( a+b+c \right)}^{3}}=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right) \right)$ .
On multiplying the terms in the right-hand side of the equation, we get:
${{\left( a+b+c \right)}^{3}}={{a}^{3}}+{{b}^{3}}+{{c}^{3}}+{{a}^{2}}\left( b+c \right)+{{b}^{2}}\left( c+a \right)+{{c}^{2}}\left( b+a \right)+2\left( ab+bc+ca \right)\left( a+b+c \right)$
$\Rightarrow {{\left( a+b+c \right)}^{3}}={{a}^{3}}+{{b}^{3}}+{{c}^{3}}+3{{a}^{2}}(b+c)+3{{b}^{2}}(a+c)+3{{c}^{2}}(a+b)+6abc$
Shifting \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}\] to left-hand side of the equation and rest of the terms to right-hand side of the equation, we get:
\[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b+c \right)}^{3}}-3{{a}^{2}}(b+c)-3{{b}^{2}}(a+c)-3{{c}^{2}}(a+b)-6abc\]
Now, we will subtract $3abc$ from both sides of the equation. So, we get:
$\Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc={{\left( a+b+c \right)}^{3}}-\left[ 3{{a}^{2}}(b+c)+3{{b}^{2}}(a+c)+3{{c}^{2}}(a+b)+9abc \right]$
$\Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc={{\left( a+b+c \right)}^{3}}-\left[ 3{{a}^{2}}b+3{{a}^{2}}c+3abc+3{{b}^{2}}a+3{{b}^{2}}c+3abc+3{{c}^{2}}a+3{{c}^{2}}b+3abc \right]$
Now, on rearranging the terms, we get:
${{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc={{\left( a+b+c \right)}^{3}}-\left[ 3{{a}^{2}}b+3{{b}^{2}}a+3abc+3{{b}^{2}}c+3{{c}^{2}}b+3abc+3{{c}^{2}}a+3{{a}^{2}}c+3abc \right]$
Now, taking $3ab,3bc$ and $3ca$ common, and substituting ${{\left( a+b+c \right)}^{3}}=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right) \right)$ , we get:
\[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right) \right)-\left[ 3ab\left( a+b+c \right)+3bc\left( a+b+c \right)+3ca\left( a+b+c \right) \right]\]
Taking $\left( a+b+c \right)$ common, we get
\[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca \right)......(i)\]
Now, when $(a+b+c)=0$ , equation $(i)$ becomes \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=0\].
Now, we will consider the given problem. We are asked to find the value of $-\left( {{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}} \right)$ without actually calculating the cubes. Comparing ${{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}}$ with \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}\], we get $a=-12,b=7$ and $c=5$. On calculating the value of $(a+b+c)$ , we can see $a+b+c=-12+7+5=0$. As $a+b+c=0$ , so, \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=0\].
Or, $-\left( {{a}^{3}}+{{b}^{3}}+{{c}^{3}} \right)=-3abc$.
So, $-\left( {{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}} \right)=-3\times \left( -12 \right)\times 7\times 5=1260$.
Hence, the value of $-\left( {{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}} \right)$ is equal to $1260$.
Note: Most of the students remember the formula \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=0\], but do not remember the condition for the formula to be true, i.e. $(a+b+c)=0$ which can be very dangerous. So, instead of remembering \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=0\], it is better to remember the complete formula \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca \right)\]. It is true for any condition and thus, the student will be on a safe side and can use this formula in any condition.
Complete step-by-step answer:
Let’s consider three numbers $a,b$ and $c$, such that \[a+b+c=0\]. We have to find the value of \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}\].
We know \[{{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right)\]. We can write \[{{\left( a+b+c \right)}^{3}}\] as \[{{\left( a+b+c \right)}^{2}}\left( a+b+c \right)\].
So, ${{\left( a+b+c \right)}^{3}}=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right) \right)$ .
On multiplying the terms in the right-hand side of the equation, we get:
${{\left( a+b+c \right)}^{3}}={{a}^{3}}+{{b}^{3}}+{{c}^{3}}+{{a}^{2}}\left( b+c \right)+{{b}^{2}}\left( c+a \right)+{{c}^{2}}\left( b+a \right)+2\left( ab+bc+ca \right)\left( a+b+c \right)$
$\Rightarrow {{\left( a+b+c \right)}^{3}}={{a}^{3}}+{{b}^{3}}+{{c}^{3}}+3{{a}^{2}}(b+c)+3{{b}^{2}}(a+c)+3{{c}^{2}}(a+b)+6abc$
Shifting \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}\] to left-hand side of the equation and rest of the terms to right-hand side of the equation, we get:
\[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b+c \right)}^{3}}-3{{a}^{2}}(b+c)-3{{b}^{2}}(a+c)-3{{c}^{2}}(a+b)-6abc\]
Now, we will subtract $3abc$ from both sides of the equation. So, we get:
$\Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc={{\left( a+b+c \right)}^{3}}-\left[ 3{{a}^{2}}(b+c)+3{{b}^{2}}(a+c)+3{{c}^{2}}(a+b)+9abc \right]$
$\Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc={{\left( a+b+c \right)}^{3}}-\left[ 3{{a}^{2}}b+3{{a}^{2}}c+3abc+3{{b}^{2}}a+3{{b}^{2}}c+3abc+3{{c}^{2}}a+3{{c}^{2}}b+3abc \right]$
Now, on rearranging the terms, we get:
${{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc={{\left( a+b+c \right)}^{3}}-\left[ 3{{a}^{2}}b+3{{b}^{2}}a+3abc+3{{b}^{2}}c+3{{c}^{2}}b+3abc+3{{c}^{2}}a+3{{a}^{2}}c+3abc \right]$
Now, taking $3ab,3bc$ and $3ca$ common, and substituting ${{\left( a+b+c \right)}^{3}}=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right) \right)$ , we get:
\[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right) \right)-\left[ 3ab\left( a+b+c \right)+3bc\left( a+b+c \right)+3ca\left( a+b+c \right) \right]\]
Taking $\left( a+b+c \right)$ common, we get
\[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca \right)......(i)\]
Now, when $(a+b+c)=0$ , equation $(i)$ becomes \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=0\].
Now, we will consider the given problem. We are asked to find the value of $-\left( {{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}} \right)$ without actually calculating the cubes. Comparing ${{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}}$ with \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}\], we get $a=-12,b=7$ and $c=5$. On calculating the value of $(a+b+c)$ , we can see $a+b+c=-12+7+5=0$. As $a+b+c=0$ , so, \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=0\].
Or, $-\left( {{a}^{3}}+{{b}^{3}}+{{c}^{3}} \right)=-3abc$.
So, $-\left( {{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}} \right)=-3\times \left( -12 \right)\times 7\times 5=1260$.
Hence, the value of $-\left( {{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}} \right)$ is equal to $1260$.
Note: Most of the students remember the formula \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=0\], but do not remember the condition for the formula to be true, i.e. $(a+b+c)=0$ which can be very dangerous. So, instead of remembering \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=0\], it is better to remember the complete formula \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca \right)\]. It is true for any condition and thus, the student will be on a safe side and can use this formula in any condition.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE