Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Without actually performing the long division, state whether the following rational numbers will have terminating decimal expansion or a non-terminating repeating decimal expansion. Also, find the number of places of decimals after which the decimal expansion terminates.
$\dfrac{{23}}{{{2^3}{5^2}}}$

seo-qna
SearchIcon
Answer
VerifiedVerified
501k+ views
Hint:- If the denominator of a rational number can be factored in multiples of 2 and 5, then it will have terminating decimal expansion, else a non-terminating repeating decimal expansion.

Given,$\dfrac{{23}}{{{2^3}{5^2}}}$ For any rational number $\dfrac{{\text{p}}}{{\text{q}}}$, if on factoring the denominator q we get, ${{\text{2}}^{\text{m}}}{{\text{5}}^{\text{n}}}$ then the rational number will have a terminating decimal expansion. It is valid even when m = 0 or n = 0. But both cannot be equal to zero for the same q.
Now, we have $\dfrac{{23}}{{{2^3}{5^2}}}$, the denominator is already factored and is in the form of ${{\text{2}}^{\text{m}}}{{\text{5}}^{\text{n}}}$. So, it will have a terminating decimal expansion.
Now, for finding the number of digits after which the decimal expansion terminates. There is a simple method for the same. According to it , the number of digits after which the decimal expansion terminates is equal to either m ( when m<=n) , or n(when n<=m).
Now, comparing ${2^3}{5^2}$ with ${{\text{2}}^{\text{m}}}{{\text{5}}^{\text{n}}}$. We get, m = 3 and n = 2. The smallest number in m and n is n i.e. 2. Hence, the number of digits after which the decimal expansion terminates is 2.

Note:- In these types of questions , the key concept is on factoring the denominator if we get ${{\text{2}}^{\text{m}}}{{\text{5}}^{\text{n}}}$ . Then only, the rational number can have terminating decimal expansion.