
Without actually performing the long division, state whether the following rational numbers will have terminating decimal expansion or a non-terminating repeating decimal expansion. Also, find the number of places of decimals after which the decimal expansion terminates.
$\dfrac{{23}}{{{2^3}{5^2}}}$
Answer
623.1k+ views
Hint:- If the denominator of a rational number can be factored in multiples of 2 and 5, then it will have terminating decimal expansion, else a non-terminating repeating decimal expansion.
Given,$\dfrac{{23}}{{{2^3}{5^2}}}$ For any rational number $\dfrac{{\text{p}}}{{\text{q}}}$, if on factoring the denominator q we get, ${{\text{2}}^{\text{m}}}{{\text{5}}^{\text{n}}}$ then the rational number will have a terminating decimal expansion. It is valid even when m = 0 or n = 0. But both cannot be equal to zero for the same q.
Now, we have $\dfrac{{23}}{{{2^3}{5^2}}}$, the denominator is already factored and is in the form of ${{\text{2}}^{\text{m}}}{{\text{5}}^{\text{n}}}$. So, it will have a terminating decimal expansion.
Now, for finding the number of digits after which the decimal expansion terminates. There is a simple method for the same. According to it , the number of digits after which the decimal expansion terminates is equal to either m ( when m<=n) , or n(when n<=m).
Now, comparing ${2^3}{5^2}$ with ${{\text{2}}^{\text{m}}}{{\text{5}}^{\text{n}}}$. We get, m = 3 and n = 2. The smallest number in m and n is n i.e. 2. Hence, the number of digits after which the decimal expansion terminates is 2.
Note:- In these types of questions , the key concept is on factoring the denominator if we get ${{\text{2}}^{\text{m}}}{{\text{5}}^{\text{n}}}$ . Then only, the rational number can have terminating decimal expansion.
Given,$\dfrac{{23}}{{{2^3}{5^2}}}$ For any rational number $\dfrac{{\text{p}}}{{\text{q}}}$, if on factoring the denominator q we get, ${{\text{2}}^{\text{m}}}{{\text{5}}^{\text{n}}}$ then the rational number will have a terminating decimal expansion. It is valid even when m = 0 or n = 0. But both cannot be equal to zero for the same q.
Now, we have $\dfrac{{23}}{{{2^3}{5^2}}}$, the denominator is already factored and is in the form of ${{\text{2}}^{\text{m}}}{{\text{5}}^{\text{n}}}$. So, it will have a terminating decimal expansion.
Now, for finding the number of digits after which the decimal expansion terminates. There is a simple method for the same. According to it , the number of digits after which the decimal expansion terminates is equal to either m ( when m<=n) , or n(when n<=m).
Now, comparing ${2^3}{5^2}$ with ${{\text{2}}^{\text{m}}}{{\text{5}}^{\text{n}}}$. We get, m = 3 and n = 2. The smallest number in m and n is n i.e. 2. Hence, the number of digits after which the decimal expansion terminates is 2.
Note:- In these types of questions , the key concept is on factoring the denominator if we get ${{\text{2}}^{\text{m}}}{{\text{5}}^{\text{n}}}$ . Then only, the rational number can have terminating decimal expansion.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

