Answer
Verified
501k+ views
Hint:- If the denominator of a rational number can be factored in multiples of 2 and 5, then it will have terminating decimal expansion, else a non-terminating repeating decimal expansion.
Given,$\dfrac{{23}}{{{2^3}{5^2}}}$ For any rational number $\dfrac{{\text{p}}}{{\text{q}}}$, if on factoring the denominator q we get, ${{\text{2}}^{\text{m}}}{{\text{5}}^{\text{n}}}$ then the rational number will have a terminating decimal expansion. It is valid even when m = 0 or n = 0. But both cannot be equal to zero for the same q.
Now, we have $\dfrac{{23}}{{{2^3}{5^2}}}$, the denominator is already factored and is in the form of ${{\text{2}}^{\text{m}}}{{\text{5}}^{\text{n}}}$. So, it will have a terminating decimal expansion.
Now, for finding the number of digits after which the decimal expansion terminates. There is a simple method for the same. According to it , the number of digits after which the decimal expansion terminates is equal to either m ( when m<=n) , or n(when n<=m).
Now, comparing ${2^3}{5^2}$ with ${{\text{2}}^{\text{m}}}{{\text{5}}^{\text{n}}}$. We get, m = 3 and n = 2. The smallest number in m and n is n i.e. 2. Hence, the number of digits after which the decimal expansion terminates is 2.
Note:- In these types of questions , the key concept is on factoring the denominator if we get ${{\text{2}}^{\text{m}}}{{\text{5}}^{\text{n}}}$ . Then only, the rational number can have terminating decimal expansion.
Given,$\dfrac{{23}}{{{2^3}{5^2}}}$ For any rational number $\dfrac{{\text{p}}}{{\text{q}}}$, if on factoring the denominator q we get, ${{\text{2}}^{\text{m}}}{{\text{5}}^{\text{n}}}$ then the rational number will have a terminating decimal expansion. It is valid even when m = 0 or n = 0. But both cannot be equal to zero for the same q.
Now, we have $\dfrac{{23}}{{{2^3}{5^2}}}$, the denominator is already factored and is in the form of ${{\text{2}}^{\text{m}}}{{\text{5}}^{\text{n}}}$. So, it will have a terminating decimal expansion.
Now, for finding the number of digits after which the decimal expansion terminates. There is a simple method for the same. According to it , the number of digits after which the decimal expansion terminates is equal to either m ( when m<=n) , or n(when n<=m).
Now, comparing ${2^3}{5^2}$ with ${{\text{2}}^{\text{m}}}{{\text{5}}^{\text{n}}}$. We get, m = 3 and n = 2. The smallest number in m and n is n i.e. 2. Hence, the number of digits after which the decimal expansion terminates is 2.
Note:- In these types of questions , the key concept is on factoring the denominator if we get ${{\text{2}}^{\text{m}}}{{\text{5}}^{\text{n}}}$ . Then only, the rational number can have terminating decimal expansion.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE