
How many words can be formed using the letters A thrice, the letter B twice and the letter C once?
(a) 60
(b) 120
(c) 90
(d) 59
Answer
518.4k+ views
Hint: We first try to explain the general formula where we find the arrangement of n things out of which p things are one a kind, q things are other of a kind and the rest are unique as $\dfrac{n!}{p!\times q!}$. For our given problem we find an arrangement of 6 letters out of which 3 A’s are similar, 2 B’s are similar and 1 C is unique. We put the values to find the solution.
Complete step-by-step solution:
We have to construct words using the letters A thrice, the letter B twice and the letter C once.
Therefore, we can use AAABBC.
So, in total there are 6 letters.
Now the formula of arranging n things out of which p things are one a kind, q things are other of a kind and the rest are unique is $\dfrac{n!}{p!\times q!}$.
In our given arrangement we have to find the number of words for 6 letters out of which 3 As are similar, 2 bs are similar and 1 C is unique.
Therefore, the number of words will be $\dfrac{6!}{3!\times 2!}=\dfrac{720}{12}=60$.
The correct option is A.
Note: There are some constraints in the form of ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}$. The general conditions are $n\ge r\ge 0;n\ne 0$. Also, we need to remember the fact that the notion of choosing r objects out of n objects is exactly equal to the notion of choosing $\left( n-r \right)$ objects out of n objects. The mathematical expression is ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}={}^{n}{{C}_{n-r}}$.
Complete step-by-step solution:
We have to construct words using the letters A thrice, the letter B twice and the letter C once.
Therefore, we can use AAABBC.
So, in total there are 6 letters.
Now the formula of arranging n things out of which p things are one a kind, q things are other of a kind and the rest are unique is $\dfrac{n!}{p!\times q!}$.
In our given arrangement we have to find the number of words for 6 letters out of which 3 As are similar, 2 bs are similar and 1 C is unique.
Therefore, the number of words will be $\dfrac{6!}{3!\times 2!}=\dfrac{720}{12}=60$.
The correct option is A.
Note: There are some constraints in the form of ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}$. The general conditions are $n\ge r\ge 0;n\ne 0$. Also, we need to remember the fact that the notion of choosing r objects out of n objects is exactly equal to the notion of choosing $\left( n-r \right)$ objects out of n objects. The mathematical expression is ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}={}^{n}{{C}_{n-r}}$.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

