Answer
Verified
396.3k+ views
Hint: We first try to explain the general formula where we find the arrangement of n things out of which p things are one a kind, q things are other of a kind and the rest are unique as $\dfrac{n!}{p!\times q!}$. For our given problem we find an arrangement of 6 letters out of which 3 A’s are similar, 2 B’s are similar and 1 C is unique. We put the values to find the solution.
Complete step-by-step solution:
We have to construct words using the letters A thrice, the letter B twice and the letter C once.
Therefore, we can use AAABBC.
So, in total there are 6 letters.
Now the formula of arranging n things out of which p things are one a kind, q things are other of a kind and the rest are unique is $\dfrac{n!}{p!\times q!}$.
In our given arrangement we have to find the number of words for 6 letters out of which 3 As are similar, 2 bs are similar and 1 C is unique.
Therefore, the number of words will be $\dfrac{6!}{3!\times 2!}=\dfrac{720}{12}=60$.
The correct option is A.
Note: There are some constraints in the form of ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}$. The general conditions are $n\ge r\ge 0;n\ne 0$. Also, we need to remember the fact that the notion of choosing r objects out of n objects is exactly equal to the notion of choosing $\left( n-r \right)$ objects out of n objects. The mathematical expression is ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}={}^{n}{{C}_{n-r}}$.
Complete step-by-step solution:
We have to construct words using the letters A thrice, the letter B twice and the letter C once.
Therefore, we can use AAABBC.
So, in total there are 6 letters.
Now the formula of arranging n things out of which p things are one a kind, q things are other of a kind and the rest are unique is $\dfrac{n!}{p!\times q!}$.
In our given arrangement we have to find the number of words for 6 letters out of which 3 As are similar, 2 bs are similar and 1 C is unique.
Therefore, the number of words will be $\dfrac{6!}{3!\times 2!}=\dfrac{720}{12}=60$.
The correct option is A.
Note: There are some constraints in the form of ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}$. The general conditions are $n\ge r\ge 0;n\ne 0$. Also, we need to remember the fact that the notion of choosing r objects out of n objects is exactly equal to the notion of choosing $\left( n-r \right)$ objects out of n objects. The mathematical expression is ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\times \left( n-r \right)!}={}^{n}{{C}_{n-r}}$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE