Answer
Verified
500.7k+ views
Hint:- Find, total number of vowels and consonants in the given word.
As we know that in English alphabets A, E, I, O and U are vowels.
And the rest of the alphabets are consonants.
So, we can see that in the word DAUGHTER.
\[ \Rightarrow \]Total number of letters are 8. In which,
\[ \Rightarrow \]Total vowels \[ = {\text{ }}3\]
\[ \Rightarrow \]Total consonants \[ = 5\]
Now, we had to make a word using five letters of the given word.
Out of the five letters 2 should be vowels and 3 should be consonants.
\[ \Rightarrow \]So, here we had to choose 2 vowels out of the 3 vowels,
And that will be done in \[{}^3{C_2}\]\[{\text{ = 3 }}\]ways.
\[ \Rightarrow \]And 3 consonants out of 5 consonants.
And that will be done in \[{}^5{C_3}{\text{ = 10 }}\]ways.
\[ \Rightarrow \]And then arrange that five letters of word in \[5!\] ways.
So, total number of ways of forming a five letters word from the given word
DAUGHTER having 2 vowels and 3 consonants will be;
\[ \Rightarrow \]Total ways \[ = {}^3{C_2}*{}^5{C_3}*5! = 3600\].
Note:- Whenever we came up with this type of problems then first, we should
find the number of ways for selection of vowels and then find number of ways
for the selection of consonants. And at last never forget to multiply the number
of ways by \[n!\] to get the total number of ways. As it is given in the question that
a word of five letters can also be meaningless.
As we know that in English alphabets A, E, I, O and U are vowels.
And the rest of the alphabets are consonants.
So, we can see that in the word DAUGHTER.
\[ \Rightarrow \]Total number of letters are 8. In which,
\[ \Rightarrow \]Total vowels \[ = {\text{ }}3\]
\[ \Rightarrow \]Total consonants \[ = 5\]
Now, we had to make a word using five letters of the given word.
Out of the five letters 2 should be vowels and 3 should be consonants.
\[ \Rightarrow \]So, here we had to choose 2 vowels out of the 3 vowels,
And that will be done in \[{}^3{C_2}\]\[{\text{ = 3 }}\]ways.
\[ \Rightarrow \]And 3 consonants out of 5 consonants.
And that will be done in \[{}^5{C_3}{\text{ = 10 }}\]ways.
\[ \Rightarrow \]And then arrange that five letters of word in \[5!\] ways.
So, total number of ways of forming a five letters word from the given word
DAUGHTER having 2 vowels and 3 consonants will be;
\[ \Rightarrow \]Total ways \[ = {}^3{C_2}*{}^5{C_3}*5! = 3600\].
Note:- Whenever we came up with this type of problems then first, we should
find the number of ways for selection of vowels and then find number of ways
for the selection of consonants. And at last never forget to multiply the number
of ways by \[n!\] to get the total number of ways. As it is given in the question that
a word of five letters can also be meaningless.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE