Answer
Verified
429.9k+ views
Hint: In order to write the given question $0.000043$ into its scientific notation then , we need to first understand the term ‘ scientific notation ‘ . Scientific Notation is written in the form of $a \times {10^n}$ , where $1 \leqslant a < 10$ that is we can say the number has a single digit to the left of the decimal point where n is an integer .
And the multiplication of a decimal by tens , hundreds and thousands or etc. itself means that the decimal will be moved to the right side by as many as the number of zeroes are there in the multiplier . If suppose that the decimal number having less digits after the decimal than the multiplier ( or the number of zero is more ) , then the extra zeroes must be added to the final answer as it is . If the decimal is being moved to the right, the exponent will be negative . By following these steps we can find the desired result of writing decimal when multiplying and making it in standard form .
Complete step by step solution:
We have given a decimal number in the form $0.000043$ where after decimal there are 6 digits .
Here, in this question we have given decimal as $0.000043$.
So , to calculate the scientific notation of the given decimal , we have to first just sort that there must be a single digit to the left of the decimal point .
In order to do that we need to move the decimal point to the right side until one digit that 4 comes to the left of the decimal and 3 comes to the right of the decimal point .
Now the decimal point moves five places to the right from $0.000043$ to $4.3$ . But now the multiplier just used 5 zeroes to overcome the decimal and so we can write in scientific notation we have the ${10^5}$ , as we know the fact that states If the decimal is being moved to the right, the exponent will be negative . That is now we have 5 zeros after moving decimal to right and the exponent becomes ${10^{ - 5}}$ .
Hence , the result is $4.3 \times {10^{ - 5}}$ as we moved the decimal 5 places to the right .
Note:
1. Do not Forget to verify the end of the result with the zeroes .
2. If you multiply a decimal with 10 , then the decimal point will be moved to the right side by 1 place
3. If you multiply a decimal with 100 , then the decimal point will be moved to the right side by 2 places .
4. If you multiply a decimal with 1000 , then the decimal point will be moved to the right side by 3 places .
5. If the decimal number has less digits after the decimal than the multiplier ( or the number of zero is more ) , then the extra zeroes must be added to the final answer as it is .
If the decimal is being moved to the right, the exponent will be negative. If the decimal is being moved to the left, the exponent will be positive.
And the multiplication of a decimal by tens , hundreds and thousands or etc. itself means that the decimal will be moved to the right side by as many as the number of zeroes are there in the multiplier . If suppose that the decimal number having less digits after the decimal than the multiplier ( or the number of zero is more ) , then the extra zeroes must be added to the final answer as it is . If the decimal is being moved to the right, the exponent will be negative . By following these steps we can find the desired result of writing decimal when multiplying and making it in standard form .
Complete step by step solution:
We have given a decimal number in the form $0.000043$ where after decimal there are 6 digits .
Here, in this question we have given decimal as $0.000043$.
So , to calculate the scientific notation of the given decimal , we have to first just sort that there must be a single digit to the left of the decimal point .
In order to do that we need to move the decimal point to the right side until one digit that 4 comes to the left of the decimal and 3 comes to the right of the decimal point .
Now the decimal point moves five places to the right from $0.000043$ to $4.3$ . But now the multiplier just used 5 zeroes to overcome the decimal and so we can write in scientific notation we have the ${10^5}$ , as we know the fact that states If the decimal is being moved to the right, the exponent will be negative . That is now we have 5 zeros after moving decimal to right and the exponent becomes ${10^{ - 5}}$ .
Hence , the result is $4.3 \times {10^{ - 5}}$ as we moved the decimal 5 places to the right .
Note:
1. Do not Forget to verify the end of the result with the zeroes .
2. If you multiply a decimal with 10 , then the decimal point will be moved to the right side by 1 place
3. If you multiply a decimal with 100 , then the decimal point will be moved to the right side by 2 places .
4. If you multiply a decimal with 1000 , then the decimal point will be moved to the right side by 3 places .
5. If the decimal number has less digits after the decimal than the multiplier ( or the number of zero is more ) , then the extra zeroes must be added to the final answer as it is .
If the decimal is being moved to the right, the exponent will be negative. If the decimal is being moved to the left, the exponent will be positive.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers