Answer
Verified
430.5k+ views
Hint: The number given is called a number with a recurring decimal part. The recurring part is denoted by a bar on the top of the number that recur. The given decimal number can be written as $1.\overline{123}$. Consider the number to be x and multiply the number with 1000 and subtract with x and find the value of x.
Complete step by step solution:
In the question, the decimal number is given as 1.123 repeating. When we say that 1.123 is repeating, we mean that the number is a non-terminating decimal number and the digits after decimal point (that are 123) repeat in the same order. The number is called a number with a recurring decimal part. The recurring part is denoted by a bar on the top of the number that recur. The given decimal number can be written as $1.\overline{123}$.
Or we can also write it as $1.123123123.....$
Now, let us write this decimal number as a fraction. For that, let assume the number to be x.
i.e. $x=1.123123123.....$ ….(i)
Now, multiply equation (i) with 1000.
Then,
$1000x=1123.123123123.....$ ….. (ii)
Now, subtract (i) form (ii).
$1000x-x=1123.123123.....-1.123123.......$
$\Rightarrow 999x=1122$
$\therefore x=\dfrac{1122}{999}=\dfrac{374}{333}$.
Therefore, the fractional form of the decimal number $1.123$ repeating is equal to $\dfrac{374}{333}$.
Note: Note that we have to multiply the variable $x$ with a factor $10$ raised to a whole number. The whole number in the exponent place must be equal to the number of decimal digits in the recurring part. In this case, the number of digits that were recurring is 3.
Complete step by step solution:
In the question, the decimal number is given as 1.123 repeating. When we say that 1.123 is repeating, we mean that the number is a non-terminating decimal number and the digits after decimal point (that are 123) repeat in the same order. The number is called a number with a recurring decimal part. The recurring part is denoted by a bar on the top of the number that recur. The given decimal number can be written as $1.\overline{123}$.
Or we can also write it as $1.123123123.....$
Now, let us write this decimal number as a fraction. For that, let assume the number to be x.
i.e. $x=1.123123123.....$ ….(i)
Now, multiply equation (i) with 1000.
Then,
$1000x=1123.123123123.....$ ….. (ii)
Now, subtract (i) form (ii).
$1000x-x=1123.123123.....-1.123123.......$
$\Rightarrow 999x=1122$
$\therefore x=\dfrac{1122}{999}=\dfrac{374}{333}$.
Therefore, the fractional form of the decimal number $1.123$ repeating is equal to $\dfrac{374}{333}$.
Note: Note that we have to multiply the variable $x$ with a factor $10$ raised to a whole number. The whole number in the exponent place must be equal to the number of decimal digits in the recurring part. In this case, the number of digits that were recurring is 3.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE