Answer
Verified
431.4k+ views
Hint: We know that $\sin \theta $ is a periodic function with period $2\pi $ and also $\cos \theta $ is periodic function with period $2\pi $
The value of $\sin \theta $ is maximum at $\dfrac{\pi }{2}$ from $0$ to $2\pi $ the value is $1.$
The value of $\cos \theta $ is maximum at $0{}^\circ $ and $2\pi $ from $0$ to $2\pi $ the value is $1.$
The $\sin \theta $ is minimum at $0,\pi ,2\pi $ and the value is $0$ from $0$ to $2\pi $
The $\sin \theta $ is $-1$ an angle of $\dfrac{3\pi }{2}$
The $\cos \theta $ is minimum at $\dfrac{\pi }{2}$ and $\dfrac{3\pi }{2}$ the value is $0$ from $0$ to $2\pi $ and $\cos \theta $ is $-1$ and $\theta $ is $\pi $
When $\sin \theta $ and $\cos \theta $ are in the product of each other and twice of it. Then it is equal to sin of twice the angle.
$2\sin \theta \cos \theta =\sin 2\theta $
Complete step by step solution:
It is given that $2\sin 3\cos 3$
Here $3$ is the angle at sin and cos.
The angle of both are equal
Therefore, we can use the formula.
$2\sin \theta \cos \theta =\sin 2\theta $
We can put $\sin 3$ in place at $\sin \theta $ and $\cos 3$ in place of $\cos \theta $
Therefore,
$2\sin 3\cos 3=\sin 2\times 3$
The product of $2$ and $3$ is $6$
$2\sin 3\cos 3=\sin 6$
The value of $2\sin 3\cos 3$ as a single trigonometric function is $\sin 6.$
Additional Information:
This question can be asked in the other way also,
For example
Split $\sin 240$ in two trigonometric terms.
So, in this case you can do it as,
First let's split the angle which is present in the sin.
$240$ can be split as,
$120+120$ we can write it as $2\left( 120 \right)$
So, the $\sin 240$ can be written as $\sin 2\left( 120 \right)$
And we know that,
$\sin 2\theta =2\sin \theta \cos \theta $
Here, $2\theta =2\left( 120 \right)$
So, $\theta $ will be $120$
$\sin 240=2\sin 120\cos 120$
The $\sin 240$ in two trigonometric terms in $2\sin 120\cos 120.$
Note: In the question the $\theta $ is $3.$ and the formula is only applicable if the angle of sin and cos are equal.
The maximum value of $\sin 2\theta $ because both sin in common and only change is in the angle of both.
The maximum values will be different is there is term $2\sin \theta $
The value of $\sin \theta $ is maximum at $\dfrac{\pi }{2}$ from $0$ to $2\pi $ the value is $1.$
The value of $\cos \theta $ is maximum at $0{}^\circ $ and $2\pi $ from $0$ to $2\pi $ the value is $1.$
The $\sin \theta $ is minimum at $0,\pi ,2\pi $ and the value is $0$ from $0$ to $2\pi $
The $\sin \theta $ is $-1$ an angle of $\dfrac{3\pi }{2}$
The $\cos \theta $ is minimum at $\dfrac{\pi }{2}$ and $\dfrac{3\pi }{2}$ the value is $0$ from $0$ to $2\pi $ and $\cos \theta $ is $-1$ and $\theta $ is $\pi $
When $\sin \theta $ and $\cos \theta $ are in the product of each other and twice of it. Then it is equal to sin of twice the angle.
$2\sin \theta \cos \theta =\sin 2\theta $
Complete step by step solution:
It is given that $2\sin 3\cos 3$
Here $3$ is the angle at sin and cos.
The angle of both are equal
Therefore, we can use the formula.
$2\sin \theta \cos \theta =\sin 2\theta $
We can put $\sin 3$ in place at $\sin \theta $ and $\cos 3$ in place of $\cos \theta $
Therefore,
$2\sin 3\cos 3=\sin 2\times 3$
The product of $2$ and $3$ is $6$
$2\sin 3\cos 3=\sin 6$
The value of $2\sin 3\cos 3$ as a single trigonometric function is $\sin 6.$
Additional Information:
This question can be asked in the other way also,
For example
Split $\sin 240$ in two trigonometric terms.
So, in this case you can do it as,
First let's split the angle which is present in the sin.
$240$ can be split as,
$120+120$ we can write it as $2\left( 120 \right)$
So, the $\sin 240$ can be written as $\sin 2\left( 120 \right)$
And we know that,
$\sin 2\theta =2\sin \theta \cos \theta $
Here, $2\theta =2\left( 120 \right)$
So, $\theta $ will be $120$
$\sin 240=2\sin 120\cos 120$
The $\sin 240$ in two trigonometric terms in $2\sin 120\cos 120.$
Note: In the question the $\theta $ is $3.$ and the formula is only applicable if the angle of sin and cos are equal.
The maximum value of $\sin 2\theta $ because both sin in common and only change is in the angle of both.
The maximum values will be different is there is term $2\sin \theta $
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE