Answer
Verified
469.2k+ views
Hint: Before solving this question we must know the value of square roots of 2 and 3 which will help us to solve the question very easily. Also, one must know what is a rational number as it will let us choose the appropriate options.
Complete step-by-step solution:
Now, before solving the question let us talk about numbers which are called rational numbers.
In the world of mathematics, the number which is called a rational number are those numbers that can be expressed as the quotient or fraction that is $\dfrac{p}{q}$ of two numbers where q cannot be equals to 0. Now, if q equals to 1, then it gives integer value. So, every integer is a rational number.
Now, in question, it is given that we have to find a number which is rational and also it lies between $\sqrt{2}$ and $\sqrt{3}$.
Now, first let see the options which are $\dfrac{3}{2}$, $\dfrac{4}{2}$, $\dfrac{5}{2}$ and 5 and all are rational numbers.
Now, what we will do is, we will find the values of $\dfrac{3}{2}$, $\dfrac{4}{2}$, $\dfrac{5}{2}$ and 5 in integral or decimal form
So, $\dfrac{3}{2}=1.5$ , $\dfrac{4}{2}=2$, $\dfrac{5}{2}=2.5$ and 5.
Now, we know that $\sqrt{2}$ approximately equals to 1.414, and $\sqrt{3}$ approximately equals 1.732.
Now, on seeing the values of $\sqrt{2}=1.414$ and $\sqrt{3}=1.732$ and comparing them with options which are 1.5 , 2 , 2.5 and 5 we see that only 1.5 is the number which is rational and lies between $\sqrt{2}$ and $\sqrt{3}$.
Hence, option ( a ) is correct.
Note: One must know the difference between rational and irrational number so that he can discard the options on the basis of definition and also one must know the values of $\sqrt{2}$ and $\sqrt{3}$ as it makes one solve the question easily and very fast.
Complete step-by-step solution:
Now, before solving the question let us talk about numbers which are called rational numbers.
In the world of mathematics, the number which is called a rational number are those numbers that can be expressed as the quotient or fraction that is $\dfrac{p}{q}$ of two numbers where q cannot be equals to 0. Now, if q equals to 1, then it gives integer value. So, every integer is a rational number.
Now, in question, it is given that we have to find a number which is rational and also it lies between $\sqrt{2}$ and $\sqrt{3}$.
Now, first let see the options which are $\dfrac{3}{2}$, $\dfrac{4}{2}$, $\dfrac{5}{2}$ and 5 and all are rational numbers.
Now, what we will do is, we will find the values of $\dfrac{3}{2}$, $\dfrac{4}{2}$, $\dfrac{5}{2}$ and 5 in integral or decimal form
So, $\dfrac{3}{2}=1.5$ , $\dfrac{4}{2}=2$, $\dfrac{5}{2}=2.5$ and 5.
Now, we know that $\sqrt{2}$ approximately equals to 1.414, and $\sqrt{3}$ approximately equals 1.732.
Now, on seeing the values of $\sqrt{2}=1.414$ and $\sqrt{3}=1.732$ and comparing them with options which are 1.5 , 2 , 2.5 and 5 we see that only 1.5 is the number which is rational and lies between $\sqrt{2}$ and $\sqrt{3}$.
Hence, option ( a ) is correct.
Note: One must know the difference between rational and irrational number so that he can discard the options on the basis of definition and also one must know the values of $\sqrt{2}$ and $\sqrt{3}$ as it makes one solve the question easily and very fast.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE