Answer
Verified
470.4k+ views
Hint:Fraction is a number which is of the form \[\dfrac{p}{q}\] where \[q\] is not equal to zero. That is, \[\dfrac{p}{q},(q \ne 0)\]
An Equivalent fraction is a fraction which has different numerators and denominators that represents the same value or proportion of whole. Here we make many ways to find the equivalent fraction of the given fraction.
Complete step-by-step answer:
It is given that the fraction \[\dfrac{7}{9}\]
We can write it as,
\[\dfrac{7}{9} = 0.777....\]
That is approximate to \[\dfrac{7}{9} = 0.\overline 7 \]
We can solve many way in this problem,
Here we can solve one way,
That is, \[7\]multiply by \[a\]and \[9\] multiply by \[b\]where \[a \ne 0,b \ne 0\] we can
We take \[a\] and \[b\]has variables
\[ \Rightarrow \dfrac{{7 \times a}}{{9 \times b}} = \dfrac{{7a}}{{9b}}.... \to \left( 1 \right)\]
Now we have some cases,
If \[(i)\] $\text{a = b}$
\[(ii)\] $\text{a} \ne\text{b}$
Case \[(i)\] $\text{a = b}$
We can take a number from 1 to 9, and put into a and b
Suppose \[a = b = 3\]
\[ \Rightarrow \dfrac{7}{9} \times \dfrac{3}{3} = \dfrac{{21}}{{27}}\]
\[ \Rightarrow \dfrac{{21}}{{27}} = 0.777..\]
\[ \Rightarrow \dfrac{{21}}{{27}} = 0.\overline 7 \]
Suppose we take \[a = b = 4\] substitute in equation \[\left( 1 \right)\] and we get \[\dfrac{{28}}{{36}}\]
Now we find,
\[\dfrac{{28}}{{36}} = 0.77..\]
\[\dfrac{{28}}{{36}} = 0.\overline 7 \]
Similarly, for any number \[a( = b) = \{ 1,2,3,4,5,6,7,8,9\} \]
It gives the same value, \[0.\overline 7 \]
Now we take second case
Case \[(ii)\] $\text{a} \ne\text{b}$
Put \[a = 6,b = 5\]
\[\dfrac{{7 \times 6}}{{9 \times 5}} = \dfrac{{42}}{{45}}\]
\[\dfrac{{42}}{{45}} \ne 0.\overline 7 \]
Here we can take any number for \[a\] and any number for \[b\](which is not the same number) is not equal to the given fraction value.
It is satisfied only when \[a\] and \[b\] are equal.
Then we take any arbitrary values for a and b (is equal)
In the sense, take \[a( = b) = \{ 2,5,9\} \]
We get,
\[ \Rightarrow \dfrac{{7a}}{{9b}} = \dfrac{{14}}{{18}} = 0.\overline 7 \]
\[ \Rightarrow \dfrac{{7a}}{{9b}} = \dfrac{{35}}{{45}} = 0.\overline 7 \]
\[ \Rightarrow \dfrac{{7a}}{{9b}} = \dfrac{{63}}{{81}} = 0.\overline 7 \]
$\therefore $The three fractions are \[\dfrac{{14}}{{18}},\dfrac{{35}}{{45}},\dfrac{{63}}{{81}}\] equivalent fraction to the fraction\[\dfrac{7}{9}\]
Note:If we notice, we use only a single digit in both cases and all through the sum, if you want a double digit or more than it will also be in the way of our solving.
If we take \[a = 7,b = 9\] in the given fraction that same as a numerator and denominator value for \[a\] and \[b\] we get the same result,
That is
\[ \Rightarrow \dfrac{{7a}}{{9b}} = \dfrac{{7 \times 7}}{{9 \times 9}} = \dfrac{{49}}{{81}}\]
\[ \Rightarrow \dfrac{{49}}{{81}} = 0.\overline 7 \]
This is the way to approach another method.
An Equivalent fraction is a fraction which has different numerators and denominators that represents the same value or proportion of whole. Here we make many ways to find the equivalent fraction of the given fraction.
Complete step-by-step answer:
It is given that the fraction \[\dfrac{7}{9}\]
We can write it as,
\[\dfrac{7}{9} = 0.777....\]
That is approximate to \[\dfrac{7}{9} = 0.\overline 7 \]
We can solve many way in this problem,
Here we can solve one way,
That is, \[7\]multiply by \[a\]and \[9\] multiply by \[b\]where \[a \ne 0,b \ne 0\] we can
We take \[a\] and \[b\]has variables
\[ \Rightarrow \dfrac{{7 \times a}}{{9 \times b}} = \dfrac{{7a}}{{9b}}.... \to \left( 1 \right)\]
Now we have some cases,
If \[(i)\] $\text{a = b}$
\[(ii)\] $\text{a} \ne\text{b}$
Case \[(i)\] $\text{a = b}$
We can take a number from 1 to 9, and put into a and b
Suppose \[a = b = 3\]
\[ \Rightarrow \dfrac{7}{9} \times \dfrac{3}{3} = \dfrac{{21}}{{27}}\]
\[ \Rightarrow \dfrac{{21}}{{27}} = 0.777..\]
\[ \Rightarrow \dfrac{{21}}{{27}} = 0.\overline 7 \]
Suppose we take \[a = b = 4\] substitute in equation \[\left( 1 \right)\] and we get \[\dfrac{{28}}{{36}}\]
Now we find,
\[\dfrac{{28}}{{36}} = 0.77..\]
\[\dfrac{{28}}{{36}} = 0.\overline 7 \]
Similarly, for any number \[a( = b) = \{ 1,2,3,4,5,6,7,8,9\} \]
It gives the same value, \[0.\overline 7 \]
Now we take second case
Case \[(ii)\] $\text{a} \ne\text{b}$
Put \[a = 6,b = 5\]
\[\dfrac{{7 \times 6}}{{9 \times 5}} = \dfrac{{42}}{{45}}\]
\[\dfrac{{42}}{{45}} \ne 0.\overline 7 \]
Here we can take any number for \[a\] and any number for \[b\](which is not the same number) is not equal to the given fraction value.
It is satisfied only when \[a\] and \[b\] are equal.
Then we take any arbitrary values for a and b (is equal)
In the sense, take \[a( = b) = \{ 2,5,9\} \]
We get,
\[ \Rightarrow \dfrac{{7a}}{{9b}} = \dfrac{{14}}{{18}} = 0.\overline 7 \]
\[ \Rightarrow \dfrac{{7a}}{{9b}} = \dfrac{{35}}{{45}} = 0.\overline 7 \]
\[ \Rightarrow \dfrac{{7a}}{{9b}} = \dfrac{{63}}{{81}} = 0.\overline 7 \]
$\therefore $The three fractions are \[\dfrac{{14}}{{18}},\dfrac{{35}}{{45}},\dfrac{{63}}{{81}}\] equivalent fraction to the fraction\[\dfrac{7}{9}\]
Note:If we notice, we use only a single digit in both cases and all through the sum, if you want a double digit or more than it will also be in the way of our solving.
If we take \[a = 7,b = 9\] in the given fraction that same as a numerator and denominator value for \[a\] and \[b\] we get the same result,
That is
\[ \Rightarrow \dfrac{{7a}}{{9b}} = \dfrac{{7 \times 7}}{{9 \times 9}} = \dfrac{{49}}{{81}}\]
\[ \Rightarrow \dfrac{{49}}{{81}} = 0.\overline 7 \]
This is the way to approach another method.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE