Answer
Verified
429.9k+ views
Hint: Take the l.c.m. of ‘2’ and ‘3’. Divide ‘2’ with the l.c.m. and multiply the result with ‘1’. Again divide ‘3’ with the l.c.m. and multiply the result with ‘1’. Subtracting both of them as numerator and the l.c.m. as the denominator obtains the solution.
Complete step-by-step solution:
Fraction subtraction: For subtracting two fractions first we have to take the l.c.m. of the denominators of the two fractions. The first part of the numerator is obtained by multiplying a factor (which is obtained by dividing the l.c.m. with the first part of the denominator) with the existing denominator. Similarly, the second part of the numerator is obtained by multiplying a factor (which is obtained by dividing the l.c.m. with the second part of the denominator) with the existing denominator. Subtracting both the parts as numerator and the l.c.m. as a denominator together is the solution.
Coming to our expression $\dfrac{1}{2}-\dfrac{1}{3}$
As we know, the l.c.m. of ‘2’ and ‘3’ is $2\times 3=6$
So, the denominator of the result is ‘6’
For the numerator part
Dividing ‘2’ by the l.c.m. ‘6’ we get $6\div 2=3$
So the first part of the numerator of the result$=1\times 3=3$
Again, dividing ‘3’ by the l.c.m. ‘6’ we get $6\div 3=2$
So the second part of the numerator of the result$=1\times 2=2$
Hence the numerator of the result$=3-2=1$
Considering both numerator and denominator together we get the result as $\dfrac{1}{6}$
Which can be written as
$\begin{align}
& \dfrac{1}{2}-\dfrac{1}{3} \\
& \Rightarrow \dfrac{1\cdot 3-1\cdot 2}{6} \\
& \Rightarrow \dfrac{3-2}{6} \\
& \Rightarrow \dfrac{1}{6} \\
\end{align}$
This is the required solution.
Note: We obtained the result of $\dfrac{1}{2}-\dfrac{1}{3}$ as $\dfrac{1}{6}$ by fraction subtraction and as we know $\dfrac{1}{2}\times \dfrac{1}{3}=\dfrac{1\times 1}{2\times 3}=\dfrac{1}{6}$. So we can conclude that $\dfrac{1}{2}$ and $\dfrac{1}{3}$ are such fractions whose subtraction and multiplication is the same i.e. $\dfrac{1}{6}$.
Complete step-by-step solution:
Fraction subtraction: For subtracting two fractions first we have to take the l.c.m. of the denominators of the two fractions. The first part of the numerator is obtained by multiplying a factor (which is obtained by dividing the l.c.m. with the first part of the denominator) with the existing denominator. Similarly, the second part of the numerator is obtained by multiplying a factor (which is obtained by dividing the l.c.m. with the second part of the denominator) with the existing denominator. Subtracting both the parts as numerator and the l.c.m. as a denominator together is the solution.
Coming to our expression $\dfrac{1}{2}-\dfrac{1}{3}$
As we know, the l.c.m. of ‘2’ and ‘3’ is $2\times 3=6$
So, the denominator of the result is ‘6’
For the numerator part
Dividing ‘2’ by the l.c.m. ‘6’ we get $6\div 2=3$
So the first part of the numerator of the result$=1\times 3=3$
Again, dividing ‘3’ by the l.c.m. ‘6’ we get $6\div 3=2$
So the second part of the numerator of the result$=1\times 2=2$
Hence the numerator of the result$=3-2=1$
Considering both numerator and denominator together we get the result as $\dfrac{1}{6}$
Which can be written as
$\begin{align}
& \dfrac{1}{2}-\dfrac{1}{3} \\
& \Rightarrow \dfrac{1\cdot 3-1\cdot 2}{6} \\
& \Rightarrow \dfrac{3-2}{6} \\
& \Rightarrow \dfrac{1}{6} \\
\end{align}$
This is the required solution.
Note: We obtained the result of $\dfrac{1}{2}-\dfrac{1}{3}$ as $\dfrac{1}{6}$ by fraction subtraction and as we know $\dfrac{1}{2}\times \dfrac{1}{3}=\dfrac{1\times 1}{2\times 3}=\dfrac{1}{6}$. So we can conclude that $\dfrac{1}{2}$ and $\dfrac{1}{3}$ are such fractions whose subtraction and multiplication is the same i.e. $\dfrac{1}{6}$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE