Answer
Verified
445.5k+ views
Hint: Use the expansion formula of $ {\left( {a + b} \right)^3} $ . Then substitute the given values in the formula to solve the above question. Be careful while substituting the values and look after the positive and negative signs while using the expansion formula.
Complete step-by-step answer:
(A) $ {\left( {2x + 1} \right)^3} $
We know that,
$ {\left( {x + y} \right)^3} = {x^3} + {y^3} + 3xy(x + y) $
Here, $ {(2x + 1)^3} $
By comparing the expression with the formula we have, we can write
$ \Rightarrow x = 2x,y = 1 $
Now, by substituting the values in the given formula, we get
$ {(2x + 1)^3} = {\left( {2x} \right)^3} + {\left( 1 \right)^3} + \left( 3 \right)\left( {2x} \right)\left( 1 \right)\left( {2x + 1} \right) $
By simplifying it, we get
$ = 8{x^3} + 1 + 6x\left( {2x + 1} \right) $
Open the bracket to simplify further
$ \Rightarrow {(2x + 1)^3} = 8{x^3} + 1 + 12{x^2} + 6x $
(B) $ {\left( {2a - 3b} \right)^3} $
We know that
$ {\left( {x - y} \right)^3} = {x^3} - {y^3} - 3xy(x - y) $ . . . . (1)
Here, $ {\left( {2a - 3b} \right)^3} $
By comparing the above expression with the formula we have, we can write
$ \Rightarrow x = 2a,y = 3b $
Now, by substituting the values in the given formula, we get
$ {(2a - 3b)^3} = {\left( {2a} \right)^3} - {\left( {3b} \right)^3} - \left( 3 \right)\left( {2a} \right)\left( {3b} \right)\left( {2a - 3b} \right) $
By simplifying, we get
$ = 8{a^3} - 27{b^3} - 18ab\left( {2a - 3b} \right) $
By opening the brackets to further simplify, we get
$ {(2a - 3b)^3} = 8{a^3} - 27{b^3} - 36{a^2}b +54a{b^2} $
(C) $ {\left[ {\dfrac{3}{2}x + 1} \right]^3} $
We know that,
$ {\left( {x + y} \right)^3} = {x^3} + {y^3} + 3xy(x + y) $
We have $ {\left[ {\dfrac{3}{2}x + 1} \right]^3} $
By comparing the above expression with the formula we have, we can write
$ x = \dfrac{3}{2}x $ and $ y = 1 $
Now, by substituting the values in the given formula, we get
$ {\left[ {\dfrac{3}{2}x + 1} \right]^3} = {\left[ {\dfrac{3}{2}x} \right]^3} + {1^3} + 3\left[ {\dfrac{3}{2}x} \right] \times 1 \times \left[ {\dfrac{3}{2}x + 1} \right] $
By simplifying, we get
$ = \dfrac{{27}}{8}{x^3} + 1 + \dfrac{9}{2}x\left( {\dfrac{3}{2}x + 1} \right) $
By opening the brackets to further simplify, we get
$ = \dfrac{{27}}{8}{x^3} + 1 + \dfrac{{27}}{4}{x^2} + \dfrac{9}{2}x $
By rearranging it, we get
$ {\left[ {\dfrac{3}{2}x + 1} \right]^3} = \dfrac{{27}}{8}{x^3} + \dfrac{{27}}{4}{x^2} + \dfrac{9}{2}x + 1 $
(D) $ {\left[ {x - \dfrac{2}{3}y} \right]^3} $
We know that
$ {\left( {x - y} \right)^3} = {x^3} - {y^3} - 3xy(x - y) $
Here, we have
$ {\left[ {x - \dfrac{2}{3}y} \right]^3} $
By comparing the above expression with the formula we have, we can write
$ x = x $ and $ y = \dfrac{2}{3}y $
Now, by substituting the values in the given formula, we get
$ {\left[ {x - \dfrac{2}{3}y} \right]^3} = {x^3} - {\left( {\dfrac{2}{3}y} \right)^3} - 3x\left( {\dfrac{2}{3}y} \right)\left( {x - \dfrac{2}{3}y} \right) $
By simplifying it, we get
$ = {x^3} - \dfrac{8}{{27}}{y^3} - 2xy\left( {x - \dfrac{2}{3}y} \right) $
By opening the brackets to further simplify, we get
$ = {x^3} - \dfrac{8}{{27}}{y^3} - 2{x^2}y + \dfrac{4}{3}x{y^2} $
Therefore, $ {\left[ {x - \dfrac{2}{3}y} \right]^3} = {x^3} - \dfrac{8}{{27}}{y^3} - 2{x^2}y + \dfrac{4}{3}x{y^2} $
Hence, we have written all the cubes in expanded form.
Note: It was a simple question of substituting values in the formula. You need to know the formula to solve such questions. Be careful with positive and negative signs. You can further simplify question (C) and (D) to write the solution into standard form of polynomials. You can do that by multiplying both the sides by the LCM of the denominator of the RHS.
Complete step-by-step answer:
(A) $ {\left( {2x + 1} \right)^3} $
We know that,
$ {\left( {x + y} \right)^3} = {x^3} + {y^3} + 3xy(x + y) $
Here, $ {(2x + 1)^3} $
By comparing the expression with the formula we have, we can write
$ \Rightarrow x = 2x,y = 1 $
Now, by substituting the values in the given formula, we get
$ {(2x + 1)^3} = {\left( {2x} \right)^3} + {\left( 1 \right)^3} + \left( 3 \right)\left( {2x} \right)\left( 1 \right)\left( {2x + 1} \right) $
By simplifying it, we get
$ = 8{x^3} + 1 + 6x\left( {2x + 1} \right) $
Open the bracket to simplify further
$ \Rightarrow {(2x + 1)^3} = 8{x^3} + 1 + 12{x^2} + 6x $
(B) $ {\left( {2a - 3b} \right)^3} $
We know that
$ {\left( {x - y} \right)^3} = {x^3} - {y^3} - 3xy(x - y) $ . . . . (1)
Here, $ {\left( {2a - 3b} \right)^3} $
By comparing the above expression with the formula we have, we can write
$ \Rightarrow x = 2a,y = 3b $
Now, by substituting the values in the given formula, we get
$ {(2a - 3b)^3} = {\left( {2a} \right)^3} - {\left( {3b} \right)^3} - \left( 3 \right)\left( {2a} \right)\left( {3b} \right)\left( {2a - 3b} \right) $
By simplifying, we get
$ = 8{a^3} - 27{b^3} - 18ab\left( {2a - 3b} \right) $
By opening the brackets to further simplify, we get
$ {(2a - 3b)^3} = 8{a^3} - 27{b^3} - 36{a^2}b +54a{b^2} $
(C) $ {\left[ {\dfrac{3}{2}x + 1} \right]^3} $
We know that,
$ {\left( {x + y} \right)^3} = {x^3} + {y^3} + 3xy(x + y) $
We have $ {\left[ {\dfrac{3}{2}x + 1} \right]^3} $
By comparing the above expression with the formula we have, we can write
$ x = \dfrac{3}{2}x $ and $ y = 1 $
Now, by substituting the values in the given formula, we get
$ {\left[ {\dfrac{3}{2}x + 1} \right]^3} = {\left[ {\dfrac{3}{2}x} \right]^3} + {1^3} + 3\left[ {\dfrac{3}{2}x} \right] \times 1 \times \left[ {\dfrac{3}{2}x + 1} \right] $
By simplifying, we get
$ = \dfrac{{27}}{8}{x^3} + 1 + \dfrac{9}{2}x\left( {\dfrac{3}{2}x + 1} \right) $
By opening the brackets to further simplify, we get
$ = \dfrac{{27}}{8}{x^3} + 1 + \dfrac{{27}}{4}{x^2} + \dfrac{9}{2}x $
By rearranging it, we get
$ {\left[ {\dfrac{3}{2}x + 1} \right]^3} = \dfrac{{27}}{8}{x^3} + \dfrac{{27}}{4}{x^2} + \dfrac{9}{2}x + 1 $
(D) $ {\left[ {x - \dfrac{2}{3}y} \right]^3} $
We know that
$ {\left( {x - y} \right)^3} = {x^3} - {y^3} - 3xy(x - y) $
Here, we have
$ {\left[ {x - \dfrac{2}{3}y} \right]^3} $
By comparing the above expression with the formula we have, we can write
$ x = x $ and $ y = \dfrac{2}{3}y $
Now, by substituting the values in the given formula, we get
$ {\left[ {x - \dfrac{2}{3}y} \right]^3} = {x^3} - {\left( {\dfrac{2}{3}y} \right)^3} - 3x\left( {\dfrac{2}{3}y} \right)\left( {x - \dfrac{2}{3}y} \right) $
By simplifying it, we get
$ = {x^3} - \dfrac{8}{{27}}{y^3} - 2xy\left( {x - \dfrac{2}{3}y} \right) $
By opening the brackets to further simplify, we get
$ = {x^3} - \dfrac{8}{{27}}{y^3} - 2{x^2}y + \dfrac{4}{3}x{y^2} $
Therefore, $ {\left[ {x - \dfrac{2}{3}y} \right]^3} = {x^3} - \dfrac{8}{{27}}{y^3} - 2{x^2}y + \dfrac{4}{3}x{y^2} $
Hence, we have written all the cubes in expanded form.
Note: It was a simple question of substituting values in the formula. You need to know the formula to solve such questions. Be careful with positive and negative signs. You can further simplify question (C) and (D) to write the solution into standard form of polynomials. You can do that by multiplying both the sides by the LCM of the denominator of the RHS.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE