Write the formula for the sum of first n positive integers.
Answer
Verified
507.3k+ views
Hint:- Check whether n numbers form an A.P or not and apply $ \Rightarrow {S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$ .
For finding the sum of first n positive integers.
As we know that the first positive integer is 1.
And the second positive integer will be 2.
And this sequence goes on till the last number is n.
So, first n positive numbers will be \[1,2,3,4......n - 1,n\].
As we see that these n numbers written above forms an A.P. With,
$ \Rightarrow $First number, $a = 1$.
$ \Rightarrow $Common difference,${\text{ }}d = 1$.
$ \Rightarrow $And total number of terms $ = n$.
As, we know that the sum of n terms of an A.P is given as ${S_n}$. Where,
$ \Rightarrow {S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$ (1)
So, putting the values of a, d and n in equation 1. We get,
$ \Rightarrow {S_n} = \dfrac{n}{2}\left( {2 + \left( {n - 1} \right)} \right) = {\text{ }}\dfrac{{n\left( {n + 1} \right)}}{2}{\text{ }}$
Hence, sum of first n positive integers will be $\dfrac{{n\left( {n + 1} \right)}}{2}{\text{ }}$
Note:- Whenever we came up with this type of problem where we are asked to find the
Sum or product of some numbers then, first we had to check whether these number have any
relation with each other, because in most of the cases they form A.P or G.P. Then we can easily
find the sum or product of these numbers using A.P or G.P formula.
For finding the sum of first n positive integers.
As we know that the first positive integer is 1.
And the second positive integer will be 2.
And this sequence goes on till the last number is n.
So, first n positive numbers will be \[1,2,3,4......n - 1,n\].
As we see that these n numbers written above forms an A.P. With,
$ \Rightarrow $First number, $a = 1$.
$ \Rightarrow $Common difference,${\text{ }}d = 1$.
$ \Rightarrow $And total number of terms $ = n$.
As, we know that the sum of n terms of an A.P is given as ${S_n}$. Where,
$ \Rightarrow {S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$ (1)
So, putting the values of a, d and n in equation 1. We get,
$ \Rightarrow {S_n} = \dfrac{n}{2}\left( {2 + \left( {n - 1} \right)} \right) = {\text{ }}\dfrac{{n\left( {n + 1} \right)}}{2}{\text{ }}$
Hence, sum of first n positive integers will be $\dfrac{{n\left( {n + 1} \right)}}{2}{\text{ }}$
Note:- Whenever we came up with this type of problem where we are asked to find the
Sum or product of some numbers then, first we had to check whether these number have any
relation with each other, because in most of the cases they form A.P or G.P. Then we can easily
find the sum or product of these numbers using A.P or G.P formula.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE