Answer
Verified
430.2k+ views
Hint: An algebraic inequality, such as x≥10, is read “x is greater than or equal to 10.” This inequality has infinitely many solutions for x. Some of the solutions are 22, 30, 30.5, 50, 20, and 20.001. Since it is impossible to list all of the solutions, a system is needed that allows a clear communication of this infinite set. Two common ways of expressing solutions to inequality are by graphing them on a number line and using interval notation.
Complete step by step answer:
In the above question, the interval is given and we have to find the inequality satisfying this.
We can see that the interval [5,+infinity) has two types of brackets, that is “[“ and “)”
The bracket “[“ means the number after it is included and “)” means the number is not included.
Hence the interval [5,+infinity) means 5 is included, thus it represents a number greater than and equal to 5.
We know that this type of inequality can be represented by x as,
\[x\ge 5\] or \[x-5\ge 0\]
Hence the inequality of the interval [5,+infinity) is given by \[x-5\ge 0\]
Now to represent an inequality on a real number line we draw a number line and darken the lines which satisfy the inequality, for representing infinity we draw an arrow at the end of the line representing the x at the positive or negative side depending upon +infinity or -infinity.
Note:
While representing intervals of inequality we do not include infinity, that is we do not use “]” after or before infinity. In number line representation the point included is represented by a solid dot and the point which is not included is represented by a void or hollow dot.
Complete step by step answer:
In the above question, the interval is given and we have to find the inequality satisfying this.
We can see that the interval [5,+infinity) has two types of brackets, that is “[“ and “)”
The bracket “[“ means the number after it is included and “)” means the number is not included.
Hence the interval [5,+infinity) means 5 is included, thus it represents a number greater than and equal to 5.
We know that this type of inequality can be represented by x as,
\[x\ge 5\] or \[x-5\ge 0\]
Hence the inequality of the interval [5,+infinity) is given by \[x-5\ge 0\]
Now to represent an inequality on a real number line we draw a number line and darken the lines which satisfy the inequality, for representing infinity we draw an arrow at the end of the line representing the x at the positive or negative side depending upon +infinity or -infinity.
Note:
While representing intervals of inequality we do not include infinity, that is we do not use “]” after or before infinity. In number line representation the point included is represented by a solid dot and the point which is not included is represented by a void or hollow dot.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers