Answer
Verified
373.5k+ views
Hint: In this question, we need to find the Maclaurin Series for \[{\tan ^{ - 1}}x\] .For this, we will find some derivatives of \[{\tan ^{ - 1}}x\] as if \[f\left( x \right) = {\tan ^{ - 1}}x\] then we will find the values of \[{f'}\left( x \right),{f^{''}}\left( x \right),{f^{'''}}\left( x \right),{f^{iv}}\left( x \right),....\] After that we will find out the values of \[f\left( 0 \right),{\text{ }}{f'}\left( 0 \right),{\text{ }}{f^{''}}\left( 0 \right),{\text{ }}{f^{'''}}\left( 0 \right),{\text{ }}{f^{iv}}\left( x \right){\text{, }}.....\] And finally we will use the formula of Maclaurin series to evaluate our answer.
Formula of Maclaurin series is:
\[f\left( x \right) = f\left( 0 \right) + {f'}\left( 0 \right)x + \dfrac{{{f^{''}}\left( 0 \right)}}{{2!}}{x^2} + \dfrac{{{f^{'''}}\left( 0 \right)}}{{3!}}{x^3} + \dfrac{{{f^{iv}}\left( 0 \right)}}{{4!}}{x^4} + ......\]
Complete step-by-step answer:
Here we are given the function as \[{\tan ^{ - 1}}x\]
i.e., \[f\left( x \right) = {\tan ^{ - 1}}x\]
and we have to find the Maclaurin’s series for \[{\tan ^{ - 1}}x\]
Now, we know that Maclaurin series for a function \[f\left( x \right)\] is given by:
\[f\left( x \right) = f\left( 0 \right) + {f'}\left( 0 \right)x + \dfrac{{{f^{''}}\left( 0 \right)}}{{2!}}{x^2} + \dfrac{{{f^{'''}}\left( 0 \right)}}{{3!}}{x^3} + \dfrac{{{f^{iv}}\left( 0 \right)}}{{4!}}{x^4} + ......{\text{ }}\]
So, let us first evaluate the values of some of its derivatives as
\[{f'}\left( x \right),{\text{ }}{f^{''}}\left( x \right),{\text{ }}{f^{'''}}\left( x \right),{\text{ }}{f^{iv}}\left( x \right),....\]
So, we have \[f\left( x \right) = {\tan ^{ - 1}}x{\text{ }} - - - \left( 1 \right)\]
Differentiating \[f\left( x \right)\] with respect to \[x\] we get
\[{f'}\left( x \right) = \dfrac{{d\left( {{{\tan }^{ - 1}}x} \right)}}{{dx}}\]
As we know that, \[\dfrac{{d\left( {{{\tan }^{ - 1}}x} \right)}}{{dx}} = \dfrac{1}{{1 + {x^2}}}\]
So, we have
\[{f'}\left( x \right) = \dfrac{1}{{\left( {1 + {x^2}} \right)}} = {\left( {1 + {x^2}} \right)^{ - 1}} - - - \left( 2 \right)\]
Again differentiating \[{f'}\left( x \right)\] with respect to \[x\] we get
\[{f^{''}}\left( x \right) = \dfrac{d}{{dx}}\left( {{{\left( {1 + {x^2}} \right)}^{ - 1}}} \right)\]
\[ \Rightarrow {f^{''}}\left( x \right) = - {\left( {1 + {x^2}} \right)^{ - 2}}2x - - - \left( 3 \right)\]
Now, differentiating \[{f^{''}}\left( x \right)\] with respect to \[x\] we get,
\[{f^{'''}}\left( x \right) = \dfrac{d}{{dx}}\left( { - {{\left( {1 + {x^2}} \right)}^{ - 2}}2x} \right)\]
Using product rule i.e., \[\dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{d\left( v \right)}}{{dx}} + v\dfrac{{d\left( u \right)}}{{dx}}\] we get
\[{f^{'''}}\left( x \right) = - {\left( {1 + {x^2}} \right)^{ - 2}} \cdot 2{\text{ }} + {\text{ }}2x\left( {2{{\left( {1 + {x^2}} \right)}^{ - 3}} \cdot 2x} \right)\]
Taking common \[{\left( {1 + {x^2}} \right)^{ - 2}}\] , we get
\[{f^{'''}}\left( x \right) = {\left( {1 + {x^2}} \right)^{ - 2}}\left( { - 2 + 8{x^2}{{\left( {1 + {x^2}} \right)}^{ - 1}}} \right)\]
\[ \Rightarrow {f^{'''}}\left( x \right) = {\left( {1 + {x^2}} \right)^{ - 2}}\left( { - 2 + \dfrac{{8{x^2}}}{{\left( {1 + {x^2}} \right)}}} \right)\]
On simplifying it, we get
\[ \Rightarrow {f^{'''}}\left( x \right) = {\left( {1 + {x^2}} \right)^{ - 2}}\left( {\dfrac{{ - 2 - 2{x^2} + 8{x^2}}}{{\left( {1 + {x^2}} \right)}}} \right)\]
\[ \Rightarrow {f^{'''}}\left( x \right) = \left( {6{x^2} - 2} \right){\left( {1 + {x^2}} \right)^{ - 3}}{\text{ }} - - - \left( 4 \right)\]
Now, differentiating \[{f^{'''}}\left( x \right)\] with respect to \[x\] we get,
\[{f^{iv}}\left( x \right) = \dfrac{d}{{dx}}\left( {\left( {6{x^2} - 2} \right){{\left( {1 + {x^2}} \right)}^{ - 3}}} \right){\text{ }}\]
Using product rule, we get
\[{f^{iv}}\left( x \right) = \left( {6{x^2} - 2} \right)\left( { - 3{{\left( {1 + {x^2}} \right)}^{ - 4}}2x} \right) + {\left( {1 + {x^2}} \right)^{ - 3}}\left( {12x} \right)\]
Taking common \[{\left( {1 + {x^2}} \right)^{ - 3}}\] , we get
\[{f^{iv}}\left( x \right) = {\left( {1 + {x^2}} \right)^{ - 3}}\left[ {\dfrac{{\left( {6{x^2} - 2} \right)\left( { - 6x} \right)}}{{\left( {1 + {x^2}} \right)}} + 12x} \right]\]
\[ \Rightarrow {f^{iv}}\left( x \right) = {\left( {1 + {x^2}} \right)^{ - 3}}\dfrac{{\left[ { - 36{x^3} + 12x + 12x + 12{x^3}} \right]}}{{\left( {1 + {x^2}} \right)}}\]
On simplifying it, we get
\[{f^{iv}}\left( x \right) = {\left( {1 + {x^2}} \right)^{ - 4}}\left( { - 24{x^3} + 24x} \right)\]
\[ \Rightarrow {f^{iv}}\left( x \right) = - 24x\left( {{x^2} - 1} \right){\left( {1 + {x^2}} \right)^{ - 4}}{\text{ }} - - - \left( 5 \right)\]
and so on….
Now, we will find out the values of \[f\left( 0 \right),{\text{ }}{f'}\left( 0 \right),{\text{ }}{f^{''}}\left( 0 \right),{\text{ }}{f^{'''}}\left( 0 \right),{\text{ }}{f^{iv}}\left( 0 \right){\text{,}}.....\]
So, from equation \[\left( 1 \right)\] on putting \[x = 0\] we get
\[f\left( 0 \right) = {\tan ^{ - 1}}\left( 0 \right){\text{ = 0 }}\]
From equation \[\left( 2 \right)\] on putting \[x = 0\] we get
\[{f'}\left( 0 \right) = \dfrac{1}{{\left( {1 + {0^2}} \right)}} = {\left( {1 + {0^2}} \right)^{ - 1}} = 1\]
Similarly, from equation \[\left( 3 \right)\] on putting \[x = 0\] we get
\[{f^{''}}\left( 0 \right) = - {\left( {1 + {0^2}} \right)^{ - 2}}2\left( 0 \right) = 0\]
Now, from equation \[\left( 4 \right)\] on putting \[x = 0\] we get
\[{f^{'''}}\left( 0 \right) = \left( {6{{\left( 0 \right)}^2} - 2} \right){\left( {1 + {0^2}} \right)^{ - 3}} = - 2\]
and from equation \[\left( 5 \right)\] on putting \[x = 0\] we get
\[ \Rightarrow {f^{iv}}\left( 0 \right) = - 24\left( 0 \right)\left( {{0^2} - 1} \right){\left( {1 + {0^2}} \right)^{ - 4}} = 0\]
Putting all these values in Maclaurin series, we get
\[{\tan ^{ - 1}}x = 0 + x\left( 1 \right) + \dfrac{{{x^2}}}{{2!}}\left( 0 \right) + \dfrac{{{x^3}}}{{3!}}\left( { - 2} \right) + \dfrac{{{x^4}}}{{4!}}\left( 0 \right) + ......\]
\[ \Rightarrow {\tan ^{ - 1}}x = x - 2\dfrac{{{x^3}}}{{3!}} + ......\]
Now we know that,
\[n! = n \cdot \left( {n - 1} \right) \cdot \left( {n - 2} \right) \cdot ......3 \cdot 2 \cdot 1\]
So, expanding \[3! = 3 \cdot 2 \cdot 1 = 6\] we get
\[ \Rightarrow {\tan ^{ - 1}}x = x - 2\dfrac{{{x^3}}}{6} + ......\]
\[ \Rightarrow {\tan ^{ - 1}}x = x - \dfrac{{{x^3}}}{3} + ......\]
Therefore, the Maclaurin series for \[{\tan ^{ - 1}}x\] is given as,
\[{\tan ^{ - 1}}x = x - \dfrac{{{x^3}}}{3} + ......\]
So, the correct answer is “\[{\tan ^{ - 1}}x = x - \dfrac{{{x^3}}}{3} + ......\]”.
Note: Students should take care while finding all the derivatives. Also, they should note that all even values will be equal to \[0\] ,so we have the Maclaurin series in odd order only as well as there is an alternative sign between the terms. Also, they can find more functions to increase the expansion.
Formula of Maclaurin series is:
\[f\left( x \right) = f\left( 0 \right) + {f'}\left( 0 \right)x + \dfrac{{{f^{''}}\left( 0 \right)}}{{2!}}{x^2} + \dfrac{{{f^{'''}}\left( 0 \right)}}{{3!}}{x^3} + \dfrac{{{f^{iv}}\left( 0 \right)}}{{4!}}{x^4} + ......\]
Complete step-by-step answer:
Here we are given the function as \[{\tan ^{ - 1}}x\]
i.e., \[f\left( x \right) = {\tan ^{ - 1}}x\]
and we have to find the Maclaurin’s series for \[{\tan ^{ - 1}}x\]
Now, we know that Maclaurin series for a function \[f\left( x \right)\] is given by:
\[f\left( x \right) = f\left( 0 \right) + {f'}\left( 0 \right)x + \dfrac{{{f^{''}}\left( 0 \right)}}{{2!}}{x^2} + \dfrac{{{f^{'''}}\left( 0 \right)}}{{3!}}{x^3} + \dfrac{{{f^{iv}}\left( 0 \right)}}{{4!}}{x^4} + ......{\text{ }}\]
So, let us first evaluate the values of some of its derivatives as
\[{f'}\left( x \right),{\text{ }}{f^{''}}\left( x \right),{\text{ }}{f^{'''}}\left( x \right),{\text{ }}{f^{iv}}\left( x \right),....\]
So, we have \[f\left( x \right) = {\tan ^{ - 1}}x{\text{ }} - - - \left( 1 \right)\]
Differentiating \[f\left( x \right)\] with respect to \[x\] we get
\[{f'}\left( x \right) = \dfrac{{d\left( {{{\tan }^{ - 1}}x} \right)}}{{dx}}\]
As we know that, \[\dfrac{{d\left( {{{\tan }^{ - 1}}x} \right)}}{{dx}} = \dfrac{1}{{1 + {x^2}}}\]
So, we have
\[{f'}\left( x \right) = \dfrac{1}{{\left( {1 + {x^2}} \right)}} = {\left( {1 + {x^2}} \right)^{ - 1}} - - - \left( 2 \right)\]
Again differentiating \[{f'}\left( x \right)\] with respect to \[x\] we get
\[{f^{''}}\left( x \right) = \dfrac{d}{{dx}}\left( {{{\left( {1 + {x^2}} \right)}^{ - 1}}} \right)\]
\[ \Rightarrow {f^{''}}\left( x \right) = - {\left( {1 + {x^2}} \right)^{ - 2}}2x - - - \left( 3 \right)\]
Now, differentiating \[{f^{''}}\left( x \right)\] with respect to \[x\] we get,
\[{f^{'''}}\left( x \right) = \dfrac{d}{{dx}}\left( { - {{\left( {1 + {x^2}} \right)}^{ - 2}}2x} \right)\]
Using product rule i.e., \[\dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{d\left( v \right)}}{{dx}} + v\dfrac{{d\left( u \right)}}{{dx}}\] we get
\[{f^{'''}}\left( x \right) = - {\left( {1 + {x^2}} \right)^{ - 2}} \cdot 2{\text{ }} + {\text{ }}2x\left( {2{{\left( {1 + {x^2}} \right)}^{ - 3}} \cdot 2x} \right)\]
Taking common \[{\left( {1 + {x^2}} \right)^{ - 2}}\] , we get
\[{f^{'''}}\left( x \right) = {\left( {1 + {x^2}} \right)^{ - 2}}\left( { - 2 + 8{x^2}{{\left( {1 + {x^2}} \right)}^{ - 1}}} \right)\]
\[ \Rightarrow {f^{'''}}\left( x \right) = {\left( {1 + {x^2}} \right)^{ - 2}}\left( { - 2 + \dfrac{{8{x^2}}}{{\left( {1 + {x^2}} \right)}}} \right)\]
On simplifying it, we get
\[ \Rightarrow {f^{'''}}\left( x \right) = {\left( {1 + {x^2}} \right)^{ - 2}}\left( {\dfrac{{ - 2 - 2{x^2} + 8{x^2}}}{{\left( {1 + {x^2}} \right)}}} \right)\]
\[ \Rightarrow {f^{'''}}\left( x \right) = \left( {6{x^2} - 2} \right){\left( {1 + {x^2}} \right)^{ - 3}}{\text{ }} - - - \left( 4 \right)\]
Now, differentiating \[{f^{'''}}\left( x \right)\] with respect to \[x\] we get,
\[{f^{iv}}\left( x \right) = \dfrac{d}{{dx}}\left( {\left( {6{x^2} - 2} \right){{\left( {1 + {x^2}} \right)}^{ - 3}}} \right){\text{ }}\]
Using product rule, we get
\[{f^{iv}}\left( x \right) = \left( {6{x^2} - 2} \right)\left( { - 3{{\left( {1 + {x^2}} \right)}^{ - 4}}2x} \right) + {\left( {1 + {x^2}} \right)^{ - 3}}\left( {12x} \right)\]
Taking common \[{\left( {1 + {x^2}} \right)^{ - 3}}\] , we get
\[{f^{iv}}\left( x \right) = {\left( {1 + {x^2}} \right)^{ - 3}}\left[ {\dfrac{{\left( {6{x^2} - 2} \right)\left( { - 6x} \right)}}{{\left( {1 + {x^2}} \right)}} + 12x} \right]\]
\[ \Rightarrow {f^{iv}}\left( x \right) = {\left( {1 + {x^2}} \right)^{ - 3}}\dfrac{{\left[ { - 36{x^3} + 12x + 12x + 12{x^3}} \right]}}{{\left( {1 + {x^2}} \right)}}\]
On simplifying it, we get
\[{f^{iv}}\left( x \right) = {\left( {1 + {x^2}} \right)^{ - 4}}\left( { - 24{x^3} + 24x} \right)\]
\[ \Rightarrow {f^{iv}}\left( x \right) = - 24x\left( {{x^2} - 1} \right){\left( {1 + {x^2}} \right)^{ - 4}}{\text{ }} - - - \left( 5 \right)\]
and so on….
Now, we will find out the values of \[f\left( 0 \right),{\text{ }}{f'}\left( 0 \right),{\text{ }}{f^{''}}\left( 0 \right),{\text{ }}{f^{'''}}\left( 0 \right),{\text{ }}{f^{iv}}\left( 0 \right){\text{,}}.....\]
So, from equation \[\left( 1 \right)\] on putting \[x = 0\] we get
\[f\left( 0 \right) = {\tan ^{ - 1}}\left( 0 \right){\text{ = 0 }}\]
From equation \[\left( 2 \right)\] on putting \[x = 0\] we get
\[{f'}\left( 0 \right) = \dfrac{1}{{\left( {1 + {0^2}} \right)}} = {\left( {1 + {0^2}} \right)^{ - 1}} = 1\]
Similarly, from equation \[\left( 3 \right)\] on putting \[x = 0\] we get
\[{f^{''}}\left( 0 \right) = - {\left( {1 + {0^2}} \right)^{ - 2}}2\left( 0 \right) = 0\]
Now, from equation \[\left( 4 \right)\] on putting \[x = 0\] we get
\[{f^{'''}}\left( 0 \right) = \left( {6{{\left( 0 \right)}^2} - 2} \right){\left( {1 + {0^2}} \right)^{ - 3}} = - 2\]
and from equation \[\left( 5 \right)\] on putting \[x = 0\] we get
\[ \Rightarrow {f^{iv}}\left( 0 \right) = - 24\left( 0 \right)\left( {{0^2} - 1} \right){\left( {1 + {0^2}} \right)^{ - 4}} = 0\]
Putting all these values in Maclaurin series, we get
\[{\tan ^{ - 1}}x = 0 + x\left( 1 \right) + \dfrac{{{x^2}}}{{2!}}\left( 0 \right) + \dfrac{{{x^3}}}{{3!}}\left( { - 2} \right) + \dfrac{{{x^4}}}{{4!}}\left( 0 \right) + ......\]
\[ \Rightarrow {\tan ^{ - 1}}x = x - 2\dfrac{{{x^3}}}{{3!}} + ......\]
Now we know that,
\[n! = n \cdot \left( {n - 1} \right) \cdot \left( {n - 2} \right) \cdot ......3 \cdot 2 \cdot 1\]
So, expanding \[3! = 3 \cdot 2 \cdot 1 = 6\] we get
\[ \Rightarrow {\tan ^{ - 1}}x = x - 2\dfrac{{{x^3}}}{6} + ......\]
\[ \Rightarrow {\tan ^{ - 1}}x = x - \dfrac{{{x^3}}}{3} + ......\]
Therefore, the Maclaurin series for \[{\tan ^{ - 1}}x\] is given as,
\[{\tan ^{ - 1}}x = x - \dfrac{{{x^3}}}{3} + ......\]
So, the correct answer is “\[{\tan ^{ - 1}}x = x - \dfrac{{{x^3}}}{3} + ......\]”.
Note: Students should take care while finding all the derivatives. Also, they should note that all even values will be equal to \[0\] ,so we have the Maclaurin series in odd order only as well as there is an alternative sign between the terms. Also, they can find more functions to increase the expansion.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE