Answer
Verified
456.9k+ views
Hint:Vertical Angles are the angles opposite each other when two lines cross. "Vertical" in this case means they share the same Vertex (corner point).Using this definition we try to find vertical opposite angles from the figure.
Complete step-by-step answer:
The given image is,
Vertical Angles are the angles opposite each other when two lines cross. "Vertical" in this case means they share the same Vertex (corner point).
Here \[AB\] and \[XY\] are two intersecting lines. They meet at \[C\].
Then the vertical angles are \[\angle ACY,{\text{ }}\angle XCB\,\&\, \angle XCA,{\text{ }}\angle BCY\]
The interesting thing here is that, vertical angles are equal.
So,
\[\angle ACY = \angle XCB\]
\[\angle XCA = \angle BCY\]
Thus we get, the pair of vertically opposite angles are \[\angle ACY,{\text{ }}\angle XCB\,\&\, \angle XCA,{\text{ }}\angle BCY\].
Note:When two lines intersect each other, then the opposite angles, formed due to intersection are called vertical angles or vertically opposite angles. A pair of vertically opposite angles are always equal to each other. Also, a vertical angle and its adjacent angle are supplementary angles, that is they add up to \[180^\circ \]. For example, if two lines intersect and make an angle, say \[X = 45^\circ \], then its opposite angle is also equal to \[45^\circ \]. And the angle adjacent to angle \[X\] will be equal to \[180^\circ - 45^\circ = 135^\circ \].
When two lines meet at a point in a plane, they are known as intersecting lines. When the lines do not meet at any point in a plane, they are called parallel lines.
Complete step-by-step answer:
The given image is,
Vertical Angles are the angles opposite each other when two lines cross. "Vertical" in this case means they share the same Vertex (corner point).
Here \[AB\] and \[XY\] are two intersecting lines. They meet at \[C\].
Then the vertical angles are \[\angle ACY,{\text{ }}\angle XCB\,\&\, \angle XCA,{\text{ }}\angle BCY\]
The interesting thing here is that, vertical angles are equal.
So,
\[\angle ACY = \angle XCB\]
\[\angle XCA = \angle BCY\]
Thus we get, the pair of vertically opposite angles are \[\angle ACY,{\text{ }}\angle XCB\,\&\, \angle XCA,{\text{ }}\angle BCY\].
Note:When two lines intersect each other, then the opposite angles, formed due to intersection are called vertical angles or vertically opposite angles. A pair of vertically opposite angles are always equal to each other. Also, a vertical angle and its adjacent angle are supplementary angles, that is they add up to \[180^\circ \]. For example, if two lines intersect and make an angle, say \[X = 45^\circ \], then its opposite angle is also equal to \[45^\circ \]. And the angle adjacent to angle \[X\] will be equal to \[180^\circ - 45^\circ = 135^\circ \].
When two lines meet at a point in a plane, they are known as intersecting lines. When the lines do not meet at any point in a plane, they are called parallel lines.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The only snake that builds a nest is a Krait b King class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE
Which places in India experience sunrise first and class 9 social science CBSE