Answer
Verified
430.5k+ views
Hint:Use the given solution \[{y_1} = \sin 3x\] to predict the required solution. Consider $y = a\sin x$ and find its single and double derivative then and use the given differential equation to simplify it. Then separate the variables and integrate them by substitution method and finally put the integrated value into the considered variable to get the solution.
Complete step by step solution:
We have given \[{y_1} = \sin 3x\] as one of the solution of the given differential equation $y'' + 9y = 0$, so we will assume $y = a\sin 3x$ to be its general solution, then
$
y' = a'\sin 3x + 3a\cos 3x\mathfrak{A} \\
{\text{And}}\; \\
y'' = a''\sin x + 3a'\cos x + 3a'\cos x - 9a\sin x \\
\Rightarrow y'' = a''\sin x + 6a'\cos x - 9a\sin x \\
$
From the given differential equation we know that,
$y'' + 9y = 0 \Rightarrow y'' = - 9y$
And also we have assumed $y = a\sin 3x$
$ \Rightarrow y'' = - 9\sin 3x$
Now putting this in the above equation, we will get
\[
\Rightarrow y'' = a''\sin x + 6a'\cos x - 9a\sin x \\
\Rightarrow - 9a\sin 3x = a''\sin x + 6a'\cos x - 9a\sin x \\
\Rightarrow a''\sin x + 6a'\cos x = 0 \\
\]
So we have reduced it to linear differential equation in terms of $a'$
We can also express the above expression as
\[ \Rightarrow \dfrac{{a''}}{{a'}} + \dfrac{{6\cos x}}{{\sin x}} = 0\]
After integrating both sides we will get
$ \Rightarrow \ln a' + 2\ln (\sin 3x) = \ln ( - 3{c_1})$
Using property of log, we can further write it as
$
\Rightarrow \ln a' + \ln ({\sin ^2}3x) = \ln ( - 3{c_1}) \\
\Rightarrow \ln (a'{\sin ^2}3x) = \ln ( - 3{c_1}) \\
$
Taking exponent to the base e both sides,
$
\Rightarrow {e^{\ln (a'{{\sin }^2}3x)}} = {e^{\ln ( - 3{c_1})}} \\
\Rightarrow a'{\sin ^2}3x = - 3{c_1} \\
\Rightarrow a' = \dfrac{{ - 3{c_1}}}{{{{\sin }^2}3x}} \\
$
Again integrating both sides, we will get
\[
\Rightarrow \int {a'} = \int {\dfrac{{ - 3{c_1}}}{{{{\sin }^2}3x}}} \\
\Rightarrow a = {c_1}\cot 3x + {c_2} \\
\]
So we have got the value of $a$
Putting this in $y = a\sin 3x$,
$
\Rightarrow y = ({c_1}\cot 3x + {c_2})\sin 3x \\
\Rightarrow y = {c_1}\cos 3x + {c_2}\sin 3x \\
$
So this is the required solution for the differential equation $y'' + 9y = 0$
Note: You can take anything for the constant part after integrating any function according to your use. As we have taken $\ln ( - 3{c_1})$ as the constant, because all the integrated terms in terms of log,\ so we have also taken the constant as log and also for further integration process we have taken $ - 3{c_1}$ so that the result will come out to be simplified and have less terms.
Complete step by step solution:
We have given \[{y_1} = \sin 3x\] as one of the solution of the given differential equation $y'' + 9y = 0$, so we will assume $y = a\sin 3x$ to be its general solution, then
$
y' = a'\sin 3x + 3a\cos 3x\mathfrak{A} \\
{\text{And}}\; \\
y'' = a''\sin x + 3a'\cos x + 3a'\cos x - 9a\sin x \\
\Rightarrow y'' = a''\sin x + 6a'\cos x - 9a\sin x \\
$
From the given differential equation we know that,
$y'' + 9y = 0 \Rightarrow y'' = - 9y$
And also we have assumed $y = a\sin 3x$
$ \Rightarrow y'' = - 9\sin 3x$
Now putting this in the above equation, we will get
\[
\Rightarrow y'' = a''\sin x + 6a'\cos x - 9a\sin x \\
\Rightarrow - 9a\sin 3x = a''\sin x + 6a'\cos x - 9a\sin x \\
\Rightarrow a''\sin x + 6a'\cos x = 0 \\
\]
So we have reduced it to linear differential equation in terms of $a'$
We can also express the above expression as
\[ \Rightarrow \dfrac{{a''}}{{a'}} + \dfrac{{6\cos x}}{{\sin x}} = 0\]
After integrating both sides we will get
$ \Rightarrow \ln a' + 2\ln (\sin 3x) = \ln ( - 3{c_1})$
Using property of log, we can further write it as
$
\Rightarrow \ln a' + \ln ({\sin ^2}3x) = \ln ( - 3{c_1}) \\
\Rightarrow \ln (a'{\sin ^2}3x) = \ln ( - 3{c_1}) \\
$
Taking exponent to the base e both sides,
$
\Rightarrow {e^{\ln (a'{{\sin }^2}3x)}} = {e^{\ln ( - 3{c_1})}} \\
\Rightarrow a'{\sin ^2}3x = - 3{c_1} \\
\Rightarrow a' = \dfrac{{ - 3{c_1}}}{{{{\sin }^2}3x}} \\
$
Again integrating both sides, we will get
\[
\Rightarrow \int {a'} = \int {\dfrac{{ - 3{c_1}}}{{{{\sin }^2}3x}}} \\
\Rightarrow a = {c_1}\cot 3x + {c_2} \\
\]
So we have got the value of $a$
Putting this in $y = a\sin 3x$,
$
\Rightarrow y = ({c_1}\cot 3x + {c_2})\sin 3x \\
\Rightarrow y = {c_1}\cos 3x + {c_2}\sin 3x \\
$
So this is the required solution for the differential equation $y'' + 9y = 0$
Note: You can take anything for the constant part after integrating any function according to your use. As we have taken $\ln ( - 3{c_1})$ as the constant, because all the integrated terms in terms of log,\ so we have also taken the constant as log and also for further integration process we have taken $ - 3{c_1}$ so that the result will come out to be simplified and have less terms.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE