
\[y'' + 9y = 0,\;{y_1} = \sin 3x\] by using reduction of order method how can I solve this equation?
Answer
552.6k+ views
Hint:Use the given solution \[{y_1} = \sin 3x\] to predict the required solution. Consider $y = a\sin x$ and find its single and double derivative then and use the given differential equation to simplify it. Then separate the variables and integrate them by substitution method and finally put the integrated value into the considered variable to get the solution.
Complete step by step solution:
We have given \[{y_1} = \sin 3x\] as one of the solution of the given differential equation $y'' + 9y = 0$, so we will assume $y = a\sin 3x$ to be its general solution, then
$
y' = a'\sin 3x + 3a\cos 3x\mathfrak{A} \\
{\text{And}}\; \\
y'' = a''\sin x + 3a'\cos x + 3a'\cos x - 9a\sin x \\
\Rightarrow y'' = a''\sin x + 6a'\cos x - 9a\sin x \\
$
From the given differential equation we know that,
$y'' + 9y = 0 \Rightarrow y'' = - 9y$
And also we have assumed $y = a\sin 3x$
$ \Rightarrow y'' = - 9\sin 3x$
Now putting this in the above equation, we will get
\[
\Rightarrow y'' = a''\sin x + 6a'\cos x - 9a\sin x \\
\Rightarrow - 9a\sin 3x = a''\sin x + 6a'\cos x - 9a\sin x \\
\Rightarrow a''\sin x + 6a'\cos x = 0 \\
\]
So we have reduced it to linear differential equation in terms of $a'$
We can also express the above expression as
\[ \Rightarrow \dfrac{{a''}}{{a'}} + \dfrac{{6\cos x}}{{\sin x}} = 0\]
After integrating both sides we will get
$ \Rightarrow \ln a' + 2\ln (\sin 3x) = \ln ( - 3{c_1})$
Using property of log, we can further write it as
$
\Rightarrow \ln a' + \ln ({\sin ^2}3x) = \ln ( - 3{c_1}) \\
\Rightarrow \ln (a'{\sin ^2}3x) = \ln ( - 3{c_1}) \\
$
Taking exponent to the base e both sides,
$
\Rightarrow {e^{\ln (a'{{\sin }^2}3x)}} = {e^{\ln ( - 3{c_1})}} \\
\Rightarrow a'{\sin ^2}3x = - 3{c_1} \\
\Rightarrow a' = \dfrac{{ - 3{c_1}}}{{{{\sin }^2}3x}} \\
$
Again integrating both sides, we will get
\[
\Rightarrow \int {a'} = \int {\dfrac{{ - 3{c_1}}}{{{{\sin }^2}3x}}} \\
\Rightarrow a = {c_1}\cot 3x + {c_2} \\
\]
So we have got the value of $a$
Putting this in $y = a\sin 3x$,
$
\Rightarrow y = ({c_1}\cot 3x + {c_2})\sin 3x \\
\Rightarrow y = {c_1}\cos 3x + {c_2}\sin 3x \\
$
So this is the required solution for the differential equation $y'' + 9y = 0$
Note: You can take anything for the constant part after integrating any function according to your use. As we have taken $\ln ( - 3{c_1})$ as the constant, because all the integrated terms in terms of log,\ so we have also taken the constant as log and also for further integration process we have taken $ - 3{c_1}$ so that the result will come out to be simplified and have less terms.
Complete step by step solution:
We have given \[{y_1} = \sin 3x\] as one of the solution of the given differential equation $y'' + 9y = 0$, so we will assume $y = a\sin 3x$ to be its general solution, then
$
y' = a'\sin 3x + 3a\cos 3x\mathfrak{A} \\
{\text{And}}\; \\
y'' = a''\sin x + 3a'\cos x + 3a'\cos x - 9a\sin x \\
\Rightarrow y'' = a''\sin x + 6a'\cos x - 9a\sin x \\
$
From the given differential equation we know that,
$y'' + 9y = 0 \Rightarrow y'' = - 9y$
And also we have assumed $y = a\sin 3x$
$ \Rightarrow y'' = - 9\sin 3x$
Now putting this in the above equation, we will get
\[
\Rightarrow y'' = a''\sin x + 6a'\cos x - 9a\sin x \\
\Rightarrow - 9a\sin 3x = a''\sin x + 6a'\cos x - 9a\sin x \\
\Rightarrow a''\sin x + 6a'\cos x = 0 \\
\]
So we have reduced it to linear differential equation in terms of $a'$
We can also express the above expression as
\[ \Rightarrow \dfrac{{a''}}{{a'}} + \dfrac{{6\cos x}}{{\sin x}} = 0\]
After integrating both sides we will get
$ \Rightarrow \ln a' + 2\ln (\sin 3x) = \ln ( - 3{c_1})$
Using property of log, we can further write it as
$
\Rightarrow \ln a' + \ln ({\sin ^2}3x) = \ln ( - 3{c_1}) \\
\Rightarrow \ln (a'{\sin ^2}3x) = \ln ( - 3{c_1}) \\
$
Taking exponent to the base e both sides,
$
\Rightarrow {e^{\ln (a'{{\sin }^2}3x)}} = {e^{\ln ( - 3{c_1})}} \\
\Rightarrow a'{\sin ^2}3x = - 3{c_1} \\
\Rightarrow a' = \dfrac{{ - 3{c_1}}}{{{{\sin }^2}3x}} \\
$
Again integrating both sides, we will get
\[
\Rightarrow \int {a'} = \int {\dfrac{{ - 3{c_1}}}{{{{\sin }^2}3x}}} \\
\Rightarrow a = {c_1}\cot 3x + {c_2} \\
\]
So we have got the value of $a$
Putting this in $y = a\sin 3x$,
$
\Rightarrow y = ({c_1}\cot 3x + {c_2})\sin 3x \\
\Rightarrow y = {c_1}\cos 3x + {c_2}\sin 3x \\
$
So this is the required solution for the differential equation $y'' + 9y = 0$
Note: You can take anything for the constant part after integrating any function according to your use. As we have taken $\ln ( - 3{c_1})$ as the constant, because all the integrated terms in terms of log,\ so we have also taken the constant as log and also for further integration process we have taken $ - 3{c_1}$ so that the result will come out to be simplified and have less terms.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

