
Yellow light emitted from sodium vapour lamps has wavelength 580 nm. Calculate wavelength, frequency and time period of radiation.
Answer
594k+ views
Hint: Sodium comes under alkali metals whose ionization energy is very low. So, it tends to release its electron easily. Due to that electron, the radiations are being emitted. By sodium metal, light of yellow colour is emitted. The radiation of light emitted is an electromagnetic wave. The formula to be used here is $\text{c = }\lambda \times \nu $, where c is the speed of light, $\nu $ is the frequency and $\lambda $ is the wavelength.
Complete answer:
-The time taken by periodic motion to complete one cycle is the time period. The S.I. unit is second.
-Frequency is the number of waves completed in a given length of time. It is measured as the number of wave cycles per second or hertz.
- Wavelength is the distance between the two adjacent crests or troughs of a wave. The distance is in meters. Electromagnetic waves or radiations travel with the speed of light. Wavelength, frequency and time period all three are related terms. Let us see their relation:
-Time period is reciprocal of frequency. $\text{Time period = }\dfrac{1}{\text{frequency}}$.
- When wavelength is multiplied to frequency, it gives velocity. $\text{v = f}\times \lambda $, here v is equal to c. So, $\text{c = f}\times \lambda $.
Now, by applying these relations, let us find the answers. Wavelength of radiation is given as 580nm. Frequency will be equal to $\dfrac{3\times {{10}^{8}}}{580\times {{10}^{-9}}}$; nm is ${{10}^{-9}}\text{m}$. The value of frequency is $\text{5}\text{.17}\times \text{1}{{\text{0}}^{14}}\text{ se}{{\text{c}}^{-1}}$. The time period will be $\dfrac{1}{\text{frequency}}$, which is $\dfrac{1}{5.17\times {{10}^{14}}}$ equals $1.93\times {{10}^{-15}}\text{ seconds}$.
The frequency and time period of the radiation is $\text{5}\text{.17}\times \text{1}{{\text{0}}^{14}}\text{ se}{{\text{c}}^{-1}}$ and $1.93\times {{10}^{-15}}\text{ seconds}$.
Note: The value of velocity is taken as $3\times {{10}^{8}}$m/s which is the velocity of light is taken because here we are talking electromagnetic radiation. All the electromagnetic waves travel with the speed of light. Light or any radiation is a type of electromagnetic wave. So, use$\text{v = c = 3}\times \text{1}{{\text{0}}^{8}}\text{m/s}$, when the wave seems to be electromagnetic in nature. Otherwise, $\text{vc}$.
Complete answer:
-The time taken by periodic motion to complete one cycle is the time period. The S.I. unit is second.
-Frequency is the number of waves completed in a given length of time. It is measured as the number of wave cycles per second or hertz.
- Wavelength is the distance between the two adjacent crests or troughs of a wave. The distance is in meters. Electromagnetic waves or radiations travel with the speed of light. Wavelength, frequency and time period all three are related terms. Let us see their relation:
-Time period is reciprocal of frequency. $\text{Time period = }\dfrac{1}{\text{frequency}}$.
- When wavelength is multiplied to frequency, it gives velocity. $\text{v = f}\times \lambda $, here v is equal to c. So, $\text{c = f}\times \lambda $.
Now, by applying these relations, let us find the answers. Wavelength of radiation is given as 580nm. Frequency will be equal to $\dfrac{3\times {{10}^{8}}}{580\times {{10}^{-9}}}$; nm is ${{10}^{-9}}\text{m}$. The value of frequency is $\text{5}\text{.17}\times \text{1}{{\text{0}}^{14}}\text{ se}{{\text{c}}^{-1}}$. The time period will be $\dfrac{1}{\text{frequency}}$, which is $\dfrac{1}{5.17\times {{10}^{14}}}$ equals $1.93\times {{10}^{-15}}\text{ seconds}$.
The frequency and time period of the radiation is $\text{5}\text{.17}\times \text{1}{{\text{0}}^{14}}\text{ se}{{\text{c}}^{-1}}$ and $1.93\times {{10}^{-15}}\text{ seconds}$.
Note: The value of velocity is taken as $3\times {{10}^{8}}$m/s which is the velocity of light is taken because here we are talking electromagnetic radiation. All the electromagnetic waves travel with the speed of light. Light or any radiation is a type of electromagnetic wave. So, use$\text{v = c = 3}\times \text{1}{{\text{0}}^{8}}\text{m/s}$, when the wave seems to be electromagnetic in nature. Otherwise, $\text{vc}$.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

