Answer
Verified
426.3k+ views
Hint: For the given problem, we have to use permutations and combinations concepts to solve this problem. First of all for housefull we have to find cases that contain 5 cards i.e. 3 cards from the same ordinal and 2 cards from different than the one we just choose from. Second we have to find cases for a five-card combination containing two jacks and three aces.
Complete step by step solution:
For the given Dec of cards, we are given to find how many ways you can get a full house and a five-card combination containing two jacks and three aces.
We can solve the problem using permutations and combinations.
To start, let's review what a standard deck of cards looks like: 13 ordinal cards (Ace, 2-10, Jack, Queen, King) - 1 of each ordinal in each of 4 suits (spades, clubs, hearts, diamonds), and so there are 52 cards.
The first thing we need is 3 cards of the same ordinal, so we can express that as taking 1 of the 13 ordinals and getting 3 of 4 of them:
\[\begin{align}
& ^{13}{{C}_{1}}{{\times }^{4}}{{C}_{3}}=\dfrac{13!}{\left( 12! \right)\left( 1! \right)}\times \dfrac{4!}{\left( 3! \right)\left( 1! \right)} \\
& \Rightarrow 13\times 4 \\
& \Rightarrow 52 \\
\end{align}\]
The next thing we need is 2 cards from the same ordinal and this ordinal has to be different than the one we just choose from, so that looks like:
\[^{12}{{C}_{1}}{{\times }^{4}}{{C}_{2}}=\dfrac{12!}{\left( 11! \right)\left( 1! \right)}\dfrac{4!}{\left( 2! \right)\left( 2! \right)}\]
\[\begin{align}
& \Rightarrow 12\times 4\times 3\times \dfrac{1}{2} \\
& \Rightarrow 72 \\
\end{align}\]
And now we multiply them together:
\[52\times 72=3744\]
Therefore, there are 3744 ways to get full house.
For the number of hands we can draw getting specifically 2 Jacks and 3 Aces, we calculate that this way - we only need to concern ourselves with picking out the number of cards of the 4 available in each of the listed ordinals, and so we get:
\[\begin{align}
& ^{4}{{C}_{3}}{{\times }^{4}}{{C}_{2}}=\dfrac{4!}{\left( 3! \right)\left( 1! \right)}\dfrac{4!}{\left( 2! \right)\left( 2! \right)} \\
& =4\times 4\times 3\times \dfrac{1}{2} \\
& =24 \\
\end{align}\]
So, therefore there are 24 ways of five-card combination containing two jacks and three aces.
Note: Students should be aware of permutations and combination concepts. They should be aware of calculation mistakes while doing this problem. They should be careful in every step while doing this problem because any mistake may change the value of the result.
Complete step by step solution:
For the given Dec of cards, we are given to find how many ways you can get a full house and a five-card combination containing two jacks and three aces.
We can solve the problem using permutations and combinations.
To start, let's review what a standard deck of cards looks like: 13 ordinal cards (Ace, 2-10, Jack, Queen, King) - 1 of each ordinal in each of 4 suits (spades, clubs, hearts, diamonds), and so there are 52 cards.
The first thing we need is 3 cards of the same ordinal, so we can express that as taking 1 of the 13 ordinals and getting 3 of 4 of them:
\[\begin{align}
& ^{13}{{C}_{1}}{{\times }^{4}}{{C}_{3}}=\dfrac{13!}{\left( 12! \right)\left( 1! \right)}\times \dfrac{4!}{\left( 3! \right)\left( 1! \right)} \\
& \Rightarrow 13\times 4 \\
& \Rightarrow 52 \\
\end{align}\]
The next thing we need is 2 cards from the same ordinal and this ordinal has to be different than the one we just choose from, so that looks like:
\[^{12}{{C}_{1}}{{\times }^{4}}{{C}_{2}}=\dfrac{12!}{\left( 11! \right)\left( 1! \right)}\dfrac{4!}{\left( 2! \right)\left( 2! \right)}\]
\[\begin{align}
& \Rightarrow 12\times 4\times 3\times \dfrac{1}{2} \\
& \Rightarrow 72 \\
\end{align}\]
And now we multiply them together:
\[52\times 72=3744\]
Therefore, there are 3744 ways to get full house.
For the number of hands we can draw getting specifically 2 Jacks and 3 Aces, we calculate that this way - we only need to concern ourselves with picking out the number of cards of the 4 available in each of the listed ordinals, and so we get:
\[\begin{align}
& ^{4}{{C}_{3}}{{\times }^{4}}{{C}_{2}}=\dfrac{4!}{\left( 3! \right)\left( 1! \right)}\dfrac{4!}{\left( 2! \right)\left( 2! \right)} \\
& =4\times 4\times 3\times \dfrac{1}{2} \\
& =24 \\
\end{align}\]
So, therefore there are 24 ways of five-card combination containing two jacks and three aces.
Note: Students should be aware of permutations and combination concepts. They should be aware of calculation mistakes while doing this problem. They should be careful in every step while doing this problem because any mistake may change the value of the result.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE