
How to do you find the volume of the parallelepiped with the adjacent edges $pq, pr\,and\,ps$ where \[p\left( {3,0,1} \right),{\text{ }}q\left( { - 1,2,5} \right),{\text{ }}r\left( {5,1, - 1} \right){\text{ }}and{\text{ }}s\left( {0,4,2} \right)\].
Answer
498.3k+ views
Hint: Parallelogram means an object having a parallel plane if the adjacent side of the parallelogram are given in the vectors as x, y and z. The volume of a parallelepiped determined by the vectors a, b, c (where a, b and c share the same initial point) is the magnitude of their scalar triple product. Then the volume of such a parallelogram can be calculated by taking the dot product of side x with the cross product of y and z.
Complete step by step answer:
Given data is as below: the coordinates of the sides of the parallelogram are given as –
\[p\left( {3,0,1} \right),{\text{ }}q\left( { - 1,2,5} \right),{\text{ }}r\left( {5,1, - 1} \right){\text{ }}and{\text{ }}s\left( {0,4,2} \right)\]
Now, we will find the three vectors pq, pr and ps using coordinates.So,
\[\overrightarrow {pq} \] = q-p
\[\Rightarrow \overrightarrow {pq}= \left( { - 1,2,5} \right) - \left( {3,0,1} \right)\]
\[\Rightarrow \overrightarrow {pq} = ( - 1 - 3,2 - 0,5 - 1)\]
Simplify the values, we get,
\[\overrightarrow {pq} \]\[ = ( - 4,2,4)\]
Next,
\[\overrightarrow {pr} \]= r - p
\[\Rightarrow \overrightarrow {pr}= \left( {5,1, - 1} \right) - \left( {3,0,1} \right)\]
\[\Rightarrow \overrightarrow {pr}= (5 - 3,1 - 0, - 1 - 1)\]
Simplify the values, we get,
\[ = (2,1, - 2)\]
And,
\[\overrightarrow {ps} \]= s – p
\[\Rightarrow \overrightarrow {ps}= \left( {0,4,2} \right) - \left( {3,0,1} \right)\]
\[\Rightarrow \overrightarrow {ps}= (0 - 3,4 - 0,2 - 1)\]
Simplify the values, we get,
\[ \overrightarrow {ps}= ( - 3,4,1)\]
The scalar triple product is given by the determinant of the matrix \[(3 \times 3)\] that has in the rows the three components of the three vectors:
\[\left| { - 4 + 2 + 4} \right|\]
\[\Rightarrow \left| { + 2 + 1 - 2} \right|\]
\[\Rightarrow \left| { - 3 + 4 + 1} \right|\]
The expression to calculate the volume is given
\[V = \left| {PS \cdot \left( {PQ \times PR} \right)} \right|\]
Therefore, these three vectors can be used to calculate the volume of parallelogram as the triple product that can be expressed in determinant as follow,
\[V = |a \cdot (b \times c)|\]
\[\Rightarrow V = \left| {\begin{array}{*{20}{c}}
{{a_1}}&{{a_2}}&{{a_3}} \\
{{b_1}}&{{b_2}}&{{b_3}} \\
{{c_1}}&{{c_2}}&{{c_3}}
\end{array}} \right| \\
\Rightarrow V= {a_1}[{b_2}{c_3} - {c_2}{b_3}] - {a_2}[{b_1}{c_3} - {b_3}{c_1}] + {a_3}[{b_1}{c_2} - {b_2}{c_1}] \\
\]
Substituting the values in the determinant form as,
\[D = \left| {\begin{array}{*{20}{c}}
{ - 4}&2&4 \\
2&1&{ - 2} \\
{ - 3}&4&1
\end{array}} \right|\]
The volume can be calculated in the determinant form as,
\[V = - 4[1(1) - 4( - 2)] - 2[2(1) - ( - 2)( - 3)] + 4[2(4) - 1( - 3)]\]
Simplify the values, we get,
\[V = - 4[1 + 8] - 2[2 - 6] + 4[8 + 3]\]
\[\Rightarrow V = - 4(9) - 2( - 4) + 4(11)\]
\[\Rightarrow V= - 36 + 8 + 44 \\
\Rightarrow V= 16 \\ \]
\[\therefore \left| V \right| = \left| {16} \right| = 16\]
Thus, the volume of the parallelepiped is given as \[16\].
Note: Parallelepiped is a 3-D shape whose faces are all parallelograms. The volume of a parallelepiped is equal to the product of its surface area and height. The dot product or scalar product is an algebraic operation that takes two equal-length sequences of numbers, and returns a single number.
Complete step by step answer:
Given data is as below: the coordinates of the sides of the parallelogram are given as –
\[p\left( {3,0,1} \right),{\text{ }}q\left( { - 1,2,5} \right),{\text{ }}r\left( {5,1, - 1} \right){\text{ }}and{\text{ }}s\left( {0,4,2} \right)\]
Now, we will find the three vectors pq, pr and ps using coordinates.So,
\[\overrightarrow {pq} \] = q-p
\[\Rightarrow \overrightarrow {pq}= \left( { - 1,2,5} \right) - \left( {3,0,1} \right)\]
\[\Rightarrow \overrightarrow {pq} = ( - 1 - 3,2 - 0,5 - 1)\]
Simplify the values, we get,
\[\overrightarrow {pq} \]\[ = ( - 4,2,4)\]
Next,
\[\overrightarrow {pr} \]= r - p
\[\Rightarrow \overrightarrow {pr}= \left( {5,1, - 1} \right) - \left( {3,0,1} \right)\]
\[\Rightarrow \overrightarrow {pr}= (5 - 3,1 - 0, - 1 - 1)\]
Simplify the values, we get,
\[ = (2,1, - 2)\]
And,
\[\overrightarrow {ps} \]= s – p
\[\Rightarrow \overrightarrow {ps}= \left( {0,4,2} \right) - \left( {3,0,1} \right)\]
\[\Rightarrow \overrightarrow {ps}= (0 - 3,4 - 0,2 - 1)\]
Simplify the values, we get,
\[ \overrightarrow {ps}= ( - 3,4,1)\]
The scalar triple product is given by the determinant of the matrix \[(3 \times 3)\] that has in the rows the three components of the three vectors:
\[\left| { - 4 + 2 + 4} \right|\]
\[\Rightarrow \left| { + 2 + 1 - 2} \right|\]
\[\Rightarrow \left| { - 3 + 4 + 1} \right|\]
The expression to calculate the volume is given
\[V = \left| {PS \cdot \left( {PQ \times PR} \right)} \right|\]
Therefore, these three vectors can be used to calculate the volume of parallelogram as the triple product that can be expressed in determinant as follow,
\[V = |a \cdot (b \times c)|\]
\[\Rightarrow V = \left| {\begin{array}{*{20}{c}}
{{a_1}}&{{a_2}}&{{a_3}} \\
{{b_1}}&{{b_2}}&{{b_3}} \\
{{c_1}}&{{c_2}}&{{c_3}}
\end{array}} \right| \\
\Rightarrow V= {a_1}[{b_2}{c_3} - {c_2}{b_3}] - {a_2}[{b_1}{c_3} - {b_3}{c_1}] + {a_3}[{b_1}{c_2} - {b_2}{c_1}] \\
\]
Substituting the values in the determinant form as,
\[D = \left| {\begin{array}{*{20}{c}}
{ - 4}&2&4 \\
2&1&{ - 2} \\
{ - 3}&4&1
\end{array}} \right|\]
The volume can be calculated in the determinant form as,
\[V = - 4[1(1) - 4( - 2)] - 2[2(1) - ( - 2)( - 3)] + 4[2(4) - 1( - 3)]\]
Simplify the values, we get,
\[V = - 4[1 + 8] - 2[2 - 6] + 4[8 + 3]\]
\[\Rightarrow V = - 4(9) - 2( - 4) + 4(11)\]
\[\Rightarrow V= - 36 + 8 + 44 \\
\Rightarrow V= 16 \\ \]
\[\therefore \left| V \right| = \left| {16} \right| = 16\]
Thus, the volume of the parallelepiped is given as \[16\].
Note: Parallelepiped is a 3-D shape whose faces are all parallelograms. The volume of a parallelepiped is equal to the product of its surface area and height. The dot product or scalar product is an algebraic operation that takes two equal-length sequences of numbers, and returns a single number.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

