You have learned that a traveling wave in one dimension is represented by a function $y = f\left( {x,t} \right)$where $x$ and $t$ must appear in the combination $ax \pm bt$ or $x - vt$or$x + vt$,i.e.$y = f\left( {x \pm vt} \right)$. Is the converse true? Examine if the following function for y can possibly represent a traveling wave
A) ${(x - vt)^2}$
B) $log[(x + vt)/{x_0}]$
C) $1/(x + vt)$\
D) All of the above
Answer
Verified
456.9k+ views
Hint Any travelling wave must satisfy the wave equation and it can have any form of the function as long as it satisfies the wave equation. We need to check all the three options for whether they satisfy the wave equation or not.
Complete step by step answer
A travelling wave function is indeed represented by a function $y = f\left( {x \pm vt} \right)$ but it is not true that all functions of the form $y = f\left( {x \pm vt} \right)$ will represent a wave. For a function to be a wave, it must satisfy the wave equation which is as follows:
$\Rightarrow \dfrac{{{\partial ^2}f}}{{\partial {x^2}}} = \dfrac{1}{{{v^2}}}\dfrac{{{\partial ^2}f}}{{\partial {t^2}}}$
So, the converse statement is not true. Now, let us check all the 3 options and whether they satisfy the wave equation or not.
For option (A),
$\Rightarrow f = {(x - vt)^2}$
We can evaluate the left-hand side as
$\Rightarrow \dfrac{{{\partial ^2}f}}{{\partial {x^2}}} = \dfrac{\partial }{{\partial x}}(2(x - vt))$
$\Rightarrow \dfrac{{{\partial ^2}f}}{{\partial {x^2}}} = 2$
We can evaluate the derivative on the right-hand side as
$\Rightarrow \dfrac{{{\partial ^2}f}}{{\partial {t^2}}} = \dfrac{\partial }{{\partial t}}( - 2v(x - vt))$
$\Rightarrow \dfrac{{{\partial ^2}f}}{{\partial {t^2}}} = 2{v^2}$
Then the right-hand side is
$\Rightarrow \dfrac{1}{{{v^2}}}\dfrac{{{\partial ^2}f}}{{\partial {t^2}}} = \dfrac{{2{v^2}}}{{{v^2}}} = 2$
Since the left-hand side is equal to the right-hand side, the function in option (A) represents a travelling wave.
For option (B),
$\Rightarrow f = log[(x + vt)/{x_0}]$
The left-hand side can be evaluated as:
$\Rightarrow \dfrac{{{\partial ^2}f}}{{\partial {x^2}}} = \dfrac{\partial }{{\partial x}}\left( {\dfrac{{{x_0}}}{{x + vt}}} \right)$
$\Rightarrow \dfrac{{{\partial ^2}f}}{{\partial {x^2}}} = \left( {\dfrac{{ - {x_0}}}{{{{(x + vt)}^2}}}} \right)$
The derivative in the right-hand side can be evaluated as:
$\Rightarrow \dfrac{{{\partial ^2}f}}{{\partial {t^2}}} = v\dfrac{\partial }{{\partial t}}\left( {\dfrac{{{x_0}}}{{x + vt}}} \right)$
$\Rightarrow \dfrac{{{\partial ^2}f}}{{\partial {t^2}}} = {v^2}\left( {\dfrac{{ - {x_0}}}{{{{\left( {x + vt} \right)}^2}}}} \right)$
Then the right-hand side can be calculated as
$\Rightarrow \dfrac{1}{{{v^2}}}\dfrac{{{\partial ^2}f}}{{\partial {t^2}}} = \dfrac{{{v^2}}}{{{v^2}}}\left( {\dfrac{{ - {x_0}}}{{{{\left( {x + vt} \right)}^2}}}} \right)$
$\Rightarrow \dfrac{1}{{{v^2}}}\dfrac{{{\partial ^2}f}}{{\partial {t^2}}} = \left( {\dfrac{{ - {x_0}}}{{{{\left( {x + vt} \right)}^2}}}} \right)$
Since the left-hand side is equal to the right-hand side, the function in option (B) represents a travelling wave.
For option (C),
$\Rightarrow f = 1/(x + vt)$
The left-hand side can be evaluated as:
$\Rightarrow \dfrac{{{\partial ^2}f}}{{\partial {x^2}}} = \dfrac{\partial }{{\partial x}}\left( {\dfrac{{ - 1}}{{{{\left( {x + vt} \right)}^2}}}} \right)$
$\Rightarrow \dfrac{{{\partial ^2}f}}{{\partial {x^2}}} = \dfrac{2}{{{{\left( {x + vt} \right)}^3}}}$
The derivative in the right-hand side can be evaluated as:
$\Rightarrow \dfrac{{{\partial ^2}f}}{{\partial {t^2}}} = v\dfrac{\partial }{{\partial t}}\left( {\dfrac{{ - 1}}{{{{\left( {x + vt} \right)}^2}}}} \right)$
$\Rightarrow \dfrac{{{\partial ^2}f}}{{\partial {t^2}}} = {v^2}\left( {\dfrac{2}{{{{\left( {x + vt} \right)}^3}}}} \right)$
Then the right-hand side can be calculated as
$\Rightarrow \dfrac{1}{{{v^2}}}\dfrac{{{\partial ^2}f}}{{\partial {t^2}}} = \dfrac{{{v^2}}}{{{v^2}}}\left( {\dfrac{2}{{{{\left( {x + vt} \right)}^3}}}} \right)$
$\Rightarrow \dfrac{1}{{{v^2}}}\dfrac{{{\partial ^2}f}}{{\partial {t^2}}} = \dfrac{2}{{{{\left( {x + vt} \right)}^3}}}$
Since the left-hand side is equal to the right-hand side, the function in option (C) represents a travelling wave.
So, all three functions represent travelling waves.
Option (D) is correct.
Note
While all the three functions given in the question satisfied the wave equation, the converse of the statement that all functions of the form $y = f\left( {x \pm vt} \right)$ will represent a wave is not true as there are a lot of functions that will have the form $y = f\left( {x \pm vt} \right)$ and will still not satisfy the wave equation which is the primary criteria for a function to represent a traveling wave.
Complete step by step answer
A travelling wave function is indeed represented by a function $y = f\left( {x \pm vt} \right)$ but it is not true that all functions of the form $y = f\left( {x \pm vt} \right)$ will represent a wave. For a function to be a wave, it must satisfy the wave equation which is as follows:
$\Rightarrow \dfrac{{{\partial ^2}f}}{{\partial {x^2}}} = \dfrac{1}{{{v^2}}}\dfrac{{{\partial ^2}f}}{{\partial {t^2}}}$
So, the converse statement is not true. Now, let us check all the 3 options and whether they satisfy the wave equation or not.
For option (A),
$\Rightarrow f = {(x - vt)^2}$
We can evaluate the left-hand side as
$\Rightarrow \dfrac{{{\partial ^2}f}}{{\partial {x^2}}} = \dfrac{\partial }{{\partial x}}(2(x - vt))$
$\Rightarrow \dfrac{{{\partial ^2}f}}{{\partial {x^2}}} = 2$
We can evaluate the derivative on the right-hand side as
$\Rightarrow \dfrac{{{\partial ^2}f}}{{\partial {t^2}}} = \dfrac{\partial }{{\partial t}}( - 2v(x - vt))$
$\Rightarrow \dfrac{{{\partial ^2}f}}{{\partial {t^2}}} = 2{v^2}$
Then the right-hand side is
$\Rightarrow \dfrac{1}{{{v^2}}}\dfrac{{{\partial ^2}f}}{{\partial {t^2}}} = \dfrac{{2{v^2}}}{{{v^2}}} = 2$
Since the left-hand side is equal to the right-hand side, the function in option (A) represents a travelling wave.
For option (B),
$\Rightarrow f = log[(x + vt)/{x_0}]$
The left-hand side can be evaluated as:
$\Rightarrow \dfrac{{{\partial ^2}f}}{{\partial {x^2}}} = \dfrac{\partial }{{\partial x}}\left( {\dfrac{{{x_0}}}{{x + vt}}} \right)$
$\Rightarrow \dfrac{{{\partial ^2}f}}{{\partial {x^2}}} = \left( {\dfrac{{ - {x_0}}}{{{{(x + vt)}^2}}}} \right)$
The derivative in the right-hand side can be evaluated as:
$\Rightarrow \dfrac{{{\partial ^2}f}}{{\partial {t^2}}} = v\dfrac{\partial }{{\partial t}}\left( {\dfrac{{{x_0}}}{{x + vt}}} \right)$
$\Rightarrow \dfrac{{{\partial ^2}f}}{{\partial {t^2}}} = {v^2}\left( {\dfrac{{ - {x_0}}}{{{{\left( {x + vt} \right)}^2}}}} \right)$
Then the right-hand side can be calculated as
$\Rightarrow \dfrac{1}{{{v^2}}}\dfrac{{{\partial ^2}f}}{{\partial {t^2}}} = \dfrac{{{v^2}}}{{{v^2}}}\left( {\dfrac{{ - {x_0}}}{{{{\left( {x + vt} \right)}^2}}}} \right)$
$\Rightarrow \dfrac{1}{{{v^2}}}\dfrac{{{\partial ^2}f}}{{\partial {t^2}}} = \left( {\dfrac{{ - {x_0}}}{{{{\left( {x + vt} \right)}^2}}}} \right)$
Since the left-hand side is equal to the right-hand side, the function in option (B) represents a travelling wave.
For option (C),
$\Rightarrow f = 1/(x + vt)$
The left-hand side can be evaluated as:
$\Rightarrow \dfrac{{{\partial ^2}f}}{{\partial {x^2}}} = \dfrac{\partial }{{\partial x}}\left( {\dfrac{{ - 1}}{{{{\left( {x + vt} \right)}^2}}}} \right)$
$\Rightarrow \dfrac{{{\partial ^2}f}}{{\partial {x^2}}} = \dfrac{2}{{{{\left( {x + vt} \right)}^3}}}$
The derivative in the right-hand side can be evaluated as:
$\Rightarrow \dfrac{{{\partial ^2}f}}{{\partial {t^2}}} = v\dfrac{\partial }{{\partial t}}\left( {\dfrac{{ - 1}}{{{{\left( {x + vt} \right)}^2}}}} \right)$
$\Rightarrow \dfrac{{{\partial ^2}f}}{{\partial {t^2}}} = {v^2}\left( {\dfrac{2}{{{{\left( {x + vt} \right)}^3}}}} \right)$
Then the right-hand side can be calculated as
$\Rightarrow \dfrac{1}{{{v^2}}}\dfrac{{{\partial ^2}f}}{{\partial {t^2}}} = \dfrac{{{v^2}}}{{{v^2}}}\left( {\dfrac{2}{{{{\left( {x + vt} \right)}^3}}}} \right)$
$\Rightarrow \dfrac{1}{{{v^2}}}\dfrac{{{\partial ^2}f}}{{\partial {t^2}}} = \dfrac{2}{{{{\left( {x + vt} \right)}^3}}}$
Since the left-hand side is equal to the right-hand side, the function in option (C) represents a travelling wave.
So, all three functions represent travelling waves.
Option (D) is correct.
Note
While all the three functions given in the question satisfied the wave equation, the converse of the statement that all functions of the form $y = f\left( {x \pm vt} \right)$ will represent a wave is not true as there are a lot of functions that will have the form $y = f\left( {x \pm vt} \right)$ and will still not satisfy the wave equation which is the primary criteria for a function to represent a traveling wave.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE