Answer
Verified
501.3k+ views
Hint:- Find the midpoint of side BC using midpoint formula.
As we know that for any triangle, the median divides the area of the triangle into two equal parts.
So, we had to prove this for triangle having vertices,
\[ \Rightarrow \]$A(4, - 6),B(3, - 2)$ and $C(5,2)$
So, let AD be the median of this triangle then,
D will be the midpoint of side BC.
Because the median divides the side of the triangle into two equal parts.
So, for finding the value of D,
\[ \Rightarrow D = \left( {\dfrac{{3 + 5}}{2},\dfrac{{ - 2 + 2}}{2}} \right) = (4,0)\]
Now we had to find areas of both the triangles \[\Delta ADB\] and \[\Delta ADC\]. And then compare that,
As we know that for any triangle having three vertices as,
\[ \Rightarrow ({x_1},{y_1}),{\text{ }}({x_2},{y_2})\] and\[{\text{ }}({x_3},{y_3}).\]
\[ \Rightarrow \]Its area will be given as, \[\dfrac{1}{2}\left| {{x_1}({y_2} - {y_3}) + {x_2}({y_3} - {y_1}) + {x_3}({y_1} - {y_2})} \right|\] (1)
So, for finding the area of the triangle \[\Delta ADB\].
\[ \Rightarrow \]Here, \[({x_1},{y_1}) = (4, - 6);{\text{ }}({x_2},{y_2}) = (4,0);{\text{ }}({x_3},{y_3}) = (3, - 2)\].
So, putting above values in equation 1. We will get,
\[ \Rightarrow \]Area of triangle \[\Delta ADB\]\[ = \dfrac{1}{2}\left| {4(0 + 2) + 4( - 2 + 6) + 3( - 6)} \right|\].
On solving the above equation. We get,
\[ \Rightarrow \]Area of triangle \[\Delta ADB\]\[ = \dfrac{1}{2}\left| 6 \right|\].
\[ \Rightarrow \]Area of triangle \[\Delta ADB\]\[ = 3{\text{ }}unit{s^2}\].
Now, for finding the area of the triangle \[\Delta ADC\].
\[ \Rightarrow \]Here, \[({x_1},{y_1}) = (4, - 6);{\text{ }}({x_2},{y_2}) = (4,0);{\text{ }}({x_3},{y_3}) = (5,2)\].
So, putting above values in equation 1. We get,
\[ \Rightarrow \]Area of triangle \[\Delta ADC\]\[ = \dfrac{1}{2}\left| {4(0 - 2) + 4(2 + 6) + 5( - 6)} \right|\].
On solving the above equation. We get,
\[ \Rightarrow \]Area of triangle \[\Delta ADC\]\[ = \dfrac{1}{2}\left| 6 \right|\].
\[ \Rightarrow \]Area of triangle \[\Delta ADC\]\[ = 3{\text{ }}unit{s^2}\].
Hence, the area of triangle \[\Delta ADC\]= area of triangle \[\Delta ADB\].
Note:- Whenever we came up with this type of problem then the easiest and
efficient way to prove the result is to first find the coordinates of point where
median cuts the given triangle then find the area of both the triangles formed
by the median of the given triangle. Then we can compare both areas to prove our result.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE