","comment":{"@type":"Comment","text":"Total Current flowing in the closed circuit is $I=\\dfrac{V}{\\operatorname{Re}q}$, ${{R}_{eq}}$ is equivalent resistance of the whole circuit. "},"encodingFormat":"text/markdown","suggestedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$\\dfrac{5}{3},\\dfrac{5}{3}$$","position":1},{"@type":"Answer","encodingFormat":"text/html","text":" $$\\dfrac{25}{3},\\dfrac{10}{3}$$","position":2},{"@type":"Answer","encodingFormat":"text/html","text":" $$\\dfrac{25}{3},\\dfrac{7}{3}$$ ","position":3}],"acceptedAnswer":[{"@type":"Answer","encodingFormat":"text/html","text":" $$\\dfrac{25}{3},\\dfrac{5}{3}$$","position":0,"answerExplanation":{"@type":"Comment","text":" $$ \\\\ \\text{The}\\text{ 3 }\\Omega \\text{ resistances are in parallel}\\text{.} \\\\ \\text{Their equivalent resistance is} \\\\ \\dfrac{1}{{{R}_{eq}}}=\\dfrac{1}{{{R}_{1}}}+\\dfrac{1}{{{R}_{2}}}+\\dfrac{1}{{{R}_{3}}} \\\\ \\dfrac{1}{{{R}_{eq}}}=\\dfrac{1}{3}+\\dfrac{1}{3}+\\dfrac{1}{3} \\\\{{R}_{eq}}=1\\,\\,\\Omega \\\\ \\text{Equivalent Resistance of two resistors }{{\\text{R}}_{1\\text{ }}}\\text{and }{{\\text{R}}_{2}}\\,is, \\\\{{R}_{series}}={{R}_{1}}+{{R}_{2}}=1+5 \\\\{{R}_{series}}\\,=\\,6\\,\\,\\Omega \\\\ \\text{Total Current I in the circuit by Ohm }\\!\\!'\\!\\!\\text{ s law is,} \\\\V=I{{R}_{series}} \\\\ \\text{I=}\\dfrac{V}{{{R}_{series}}}=\\,\\dfrac{10}{6}=\\dfrac{5}{3}\\,\\,A \\\\ \\text{In a series combination, the current is equal across all resistances}\\text{.} \\\\ \\text{Thus, Voltage across the 5 }\\Omega \\text{ resistor is} \\\\ \\therefore {{V}_{5\\Omega }}=I{{R}_{5\\,\\,\\Omega }}=\\dfrac{5}{3}\\times 5=\\dfrac{25}{3}\\,V$$","encodingFormat":"text/html"},"comment":{"@type":"Comment"}}]}]}