Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Inverse Trigonometric Functions Class 12 Notes: CBSE Maths Chapter 2

ffImage
banner

Maths Chapter 2 Inverse Trigonometric Functions Class 12 Notes Download FREE PDF

Inverse Trigonometric Functions Class 12 Notes explore the basics of inverse trigonometric functions, which are important in solving complex maths problems. These revision notes cover the definitions, properties, and key operations related to these functions. Class 12 Maths Revision Notes help students understand how inverse trigonometric functions work and how they are applied in different situations.


Following the CBSE Class 12 Maths Syllabus, the notes explain important topics like principal values, domains, ranges, and different uses of inverse trigonometric functions. The notes are designed to make difficult topics easier to understand and to help students prepare well for exams. By using Inverse Trigonometry Class 12 Notes, students can grasp important concepts and feel more confident in their math skills.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
More Free Study Material for Inverse Trigonometric Functions
icons
Ncert solutions
605.1k views 12k downloads
icons
Important questions
760.2k views 10k downloads
icons
Ncert books
771.6k views 13k downloads

Access Class 12 Maths Chapter 2 Inverse Trigonometric Functions - PDF Download

Domain and Range of all Inverse Trigonometric Functions

Function

Domain

Range

1. \[y={{\sin }^{-1}}x\text{ if }x=\sin y\]

\[-1\le x\le 1\]

\[\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]\]

2. \[y={{\cos }^{-1}}x\text{if }x=\cos y\]

\[-1\le x\le 1\]

\[[0,\pi ]\]

3. \[y={{\tan }^{-1}}x\text{if }x=\tan y\]

\[-\infty  < x < \infty \]

\[\left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)\]

4. \[y={{\cot }^{-1}}x\text{if }x=\cot y\]

\[-\infty  < x < \infty \]

\[(0,\pi )\]

5.\[y=\text{cose}{{\text{c}}^{-1}}x\text{if }x=\text{cosec}y\]

\[(-\infty ,-1]\cup [1,\infty )\]

\[\left[ -\dfrac{\pi }{2},0 \right)\cup \left( 0,\dfrac{\pi }{2} \right]\]

6. \[y={{\sec }^{-1}}x\text{if }x=\sec y\]

\[(-\infty ,-1]\cup [1,\infty )\]

\[\left[ 0,\dfrac{\pi }{2} \right)\cup \left( \dfrac{\pi }{2},\pi  \right]\]

  • We must note that inverse trigonometric functions cannot be expressed in terms of trigonometric functions as their reciprocals. For example, ${{\sin }^{-1}}x\ne \dfrac{1}{\sin x}$.

  • The principal value of a trigonometric function is that value which lies in the range of principal branch.

  • The functions \[{{\sin }^{-1}}x\text{  }\!\!\And\!\!\text{  }{{\tan }^{-1}}x\] are increasing functions in their domain.

  • The functions \[{{\cos }^{-1}}x\text{  }\!\!\And\!\!\text{  }{{\cot }^{-1}}x\] are decreasing functions in over domain.

 

Graphs of Inverse Trigonometric Functions

a) Graph of ${{\sin }^{-1}}x$ is shown below,


Graph of sin


b) Graph of ${{\cos }^{-1}}x$ is shown below,


Graph of cos


c) Graph of ${{\tan }^{-1}}x$ is shown below,


Graph of tan


d) Graph of $\cos e{{c}^{-1}}x$ is shown below,


Graph of cos e


e) Graph of ${{\sec }^{-1}}x$ is shown below,


Graph of sec


f) Graph of ${{\cot }^{-1}}x$ is shown below,


Graph of cot


Properties of Inverse Trigonometric Functions

1. Property I

(a). \[{{\sin }^{-1}}\left( \dfrac{1}{x} \right)=\cos e{{c}^{-1}}x\], for all \[x\in \left( -\infty ,1 \right]\cup \left[ 1,\infty  \right)\]

Let us prove this by considering \[\cos e{{c}^{-1}}x=\theta \] ……(i)

Taking \[\cos ec\] on both sides,

\[x=\cos ec\theta \]

Using reciprocal identity,

\[\Rightarrow \dfrac{1}{x}=\sin \theta \]

\[\left\{ \because x\in \left( -\infty ,-1 \right]\cup \left[ 1,\infty  \right) \right\}\Rightarrow \dfrac{1}{x}\in \left[ -1,1 \right]\left\{ 0 \right\}\]

\[\cos e{{c}^{-1}}x=\theta \Rightarrow \theta \in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]-\left\{ 0 \right\}\]

\[\Rightarrow \theta ={{\sin }^{-1}}\left( \dfrac{1}{x} \right)\] ……(ii)

From (i) and (ii), we get

\[{{\sin }^{-1}}\left( \dfrac{1}{x} \right)=\cos e{{c}^{-1}}x\]

Hence proved.

b). \[{{\cos }^{-1}}\left( \dfrac{1}{x} \right)={{\sec }^{-1}}x\], for all \[x\in \left( -\infty ,1 \right]\cup \left[ 1,\infty  \right)\]

Let us prove this by taking \[{{\sec }^{-1}}x=\theta \]   ……(i)

Taking \[\sec \] on both sides,

\[\Rightarrow x=\sec \theta \]

Using reciprocal identity,

\[\Rightarrow \dfrac{1}{x}=\cos \theta \]

\[\Rightarrow \theta ={{\cos }^{-1}}\left( \dfrac{1}{x} \right)\] ……(ii)

Then, \[x\in \left( -\infty ,1 \right]\cup \left[ 1,\infty  \right)\] and \[\theta \in \left[ 0,\pi  \right]-\left\{ \dfrac{\pi }{2} \right\}\]

\[\left\{ \begin{align} & \because x=\left( -\infty ,-1 \right]\cup \left[ 1,\infty  \right) \\ & \Rightarrow \dfrac{1}{x}\in \left[ -1,1 \right]-\left\{ 0 \right\}\text{ and }\theta \in \left[ 0,\pi  \right] \\ \end{align} \right.\]

From (i) and (ii), we get

\[{{\cos }^{-1}}\left( \dfrac{1}{x} \right)={{\sec }^{-1}}\left( x \right)\]

Hence proved.

c. \[{{\tan }^{-1}}\left( \dfrac{1}{x} \right)=\left\{ \begin{align} & {{\cot }^{-1}}x,\text{ for }x>0 \\ & -\pi +{{\cot }^{-1}}x,\text{ for }x < 0 \\ \end{align} \right.\] 

Let us prove this by taking \[{{\cot }^{-1}}x=\theta \]. Then \[x\in R,x\ne 0\] and \[\theta \in \left[ 0,\pi  \right]\]   ……(i)

Now there are two cases that arise:

Case I: When \[x>0\]

In this case, we have \[\theta \in \left( 0,\dfrac{\pi }{2} \right)\]

Considering \[{{\cot }^{-1}}x=\theta \] 

Taking \[\cot \] on both sides,

\[\Rightarrow x=\cot \theta \]

Using reciprocal property,                               

\[\Rightarrow \dfrac{1}{x}=\tan \theta \]

\[\theta ={{\tan }^{-1}}\left( \dfrac{1}{x} \right)\]  ……(ii)

From (i) and (ii), we get   \[\left\{ \because \theta \in \left( 0,\dfrac{\pi }{2} \right) \right\}\]

\[{{\tan }^{-1}}\left( \dfrac{1}{x} \right)={{\cot }^{-1}}x\], for all \[x>0\]

Case II: When \[x < 0\]

In this case, we have \[\theta \in \left( \dfrac{\pi }{2},\pi \right)\text{ }\left\{ \because x=\cot \theta < 0 \right\}\]

Now, \[\dfrac{\pi }{2} < \theta  < \pi \]

\[\Rightarrow -\dfrac{\pi }{2} < \theta -\pi  < 0\]

\[\Rightarrow \theta -\pi \in \left( -\dfrac{\pi }{2},0 \right)\]

\[\therefore {{\cot }^{-1}}x=\theta \]

Taking \[\cot \] on both sides,

\[\Rightarrow x=\cot \theta \]

Using reciprocal property,

\[\Rightarrow \dfrac{1}{x}=\tan \theta \]

\[\Rightarrow \dfrac{1}{x}=-\tan \left( \pi -\theta  \right)\]

\[\Rightarrow \dfrac{1}{x}=\tan \left( \theta -\pi \right)\text{ }\left\{ \because \tan \left( \pi -\theta \right)=-\tan \theta \right\}\]

\[\Rightarrow \theta -\pi ={{\tan }^{-1}}\left( \dfrac{1}{x} \right)\text{ }\left\{ \because \theta -\pi \in \left( -\dfrac{\pi }{2},0 \right) \right\}\]

\[\Rightarrow {{\tan }^{-1}}\left( \dfrac{1}{x} \right)=-\pi +\theta \]   ……(iii)

From (i) and (iii), we get

\[{{\tan }^{-1}}\left( \dfrac{1}{x} \right)=-\pi +{{\cot }^{-1}}x\], if \[x < 0\]

Hence it is proved that \[{{\tan }^{-1}}\left( \dfrac{1}{x} \right)=\left\{ \begin{align} & {{\cot }^{-1}}x,\text{ for }x>0 \\ & -\pi +{{\cot }^{-1}}x,\text{ for }x < 0 \\ \end{align} \right.\].

 

2. Property II

  1. \[{{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}\left( x \right)\], for all \[x\in \left[ -1,1 \right]\]

  2. \[{{\tan }^{-1}}\left( -x \right)=-{{\tan }^{-1}}x\], for all \[x\in R\]

  3. \[\cos e{{c}^{-1}}\left( -x \right)=-\cos e{{c}^{-1}}x\], for all \[x\in \left( -\infty ,-1 \right]\cup \left[ 1,\infty  \right)\]

Clearly, \[-x\in \left[ -1,1 \right]\] for all \[x\in \left[ -1,1 \right]\]

Let us prove a) by taking \[{{\sin }^{-1}}\left( -x \right)=\theta \]

Then, taking $\sin $ on both sides, we get

\[-x=\sin \theta \]   ……(i)

\[\Rightarrow x=-\sin \theta \]

\[\Rightarrow x=\sin \left( -\theta  \right)\]

\[\Rightarrow -\theta ={{\sin }^{-1}}x\]

\[\left\{ \because x\in \left[ -1,1 \right]\text{ and }-\theta \in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]\text{ for all }\theta \in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right] \right\}\]

\[\Rightarrow \theta =-{{\sin }^{-1}}x\]  ……(ii)

From (i) and (ii), we get

\[{{\sin }^{-1}}\left( -x \right)=-{{\sin }^{-1}}\left( x \right)\]

Hence proved.

The b) and c) properties can also be proved in the similar manner.

3. Property III

  1. \[{{\cos }^{-1}}\left( -x \right)=\pi -{{\cos }^{-1}}\left( x \right)\], for all \[x\in \left[ -1,1 \right]\]

  2. \[{{\sec }^{-1}}\left( -x \right)=\pi -{{\sec }^{-1}}x\], for all \[x\in \left( -\infty ,-1 \right]\cup \left[ 1,\infty  \right)\]

  3. \[{{\cot }^{-1}}\left( -x \right)=\pi -{{\cot }^{-1}}x\], for all \[x\in R\]

Clearly, \[-x\in \left[ -1,1 \right]\] for all \[x\in \left[ -1,1 \right]\]

Let us prove it by taking \[{{\cos }^{-1}}\left( -x \right)=\theta \]  ……(i)

Then, taking $\cos $ on both sides, we get

\[-x=\cos \theta \]

\[\Rightarrow x=-\cos \theta \]

\[\Rightarrow x=\cos \left( \pi -\theta  \right)\]

\[\left\{ \because x\in \left[ -1,1 \right]\text{ and }\pi -\theta \in \left[ 0,\pi  \right]\text{ for all }\theta \in \left[ 0,\pi  \right] \right\}\]

\[{{\cos }^{-1}}x=\pi -\theta \]

\[\Rightarrow \theta =\pi -{{\cos }^{-1}}x\] ……(ii)

From (i) and (ii), we get

\[{{\cos }^{-1}}\left( -x \right)=\pi -{{\cos }^{-1}}\left( x \right)\]

Hence Proved.

The b) and c) properties can also be proved in the similar manner.

4.  Property IV

a) \[{{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}\], for all \[x\in \left[ -1,1 \right]\]

Let us prove it by taking \[{{\sin }^{-1}}x=\theta \]  ……(i)

Then, \[\theta \in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]\text{ }\left[ \because x\in \left[ -1,1 \right] \right]\]

\[\Rightarrow -\dfrac{\pi }{2}\le \theta \le \dfrac{\pi }{2}\]

\[\Rightarrow -\dfrac{\pi }{2}\le -\theta \le \dfrac{\pi }{2}\]

\[\Rightarrow 0\le \dfrac{\pi }{2}-\theta \le \pi \]

\[\Rightarrow \dfrac{\pi }{2}-\theta \in \left[ 0,\pi  \right]\]

Now we consider \[{{\sin }^{-1}}x=\theta \]

Taking $\sin $ on both sides, we get

\[\Rightarrow x=\sin \theta \]

Changing functions, we get

\[\Rightarrow x=\cos \left( \dfrac{\pi }{2}-\theta  \right)\]

\[\Rightarrow {{\cos }^{-1}}x=\dfrac{\pi }{2}-\theta \]

\[\left\{ \because x\in \left[ -1,1 \right]\text{ and }\left( \dfrac{\pi }{2}-\theta  \right)\in \left[ 0,\pi  \right] \right\}\]                                                

\[\Rightarrow \theta +{{\cos }^{-1}}x=\dfrac{\pi }{2}\] ……(ii)

From (i) and (ii), we get

\[{{\sin }^{-1}}x+{{\cos }^{-1}}x=\dfrac{\pi }{2}\]

Hence proved.

b) \[{{\tan }^{-1}}x+{{\cot }^{-1}}x=\dfrac{\pi }{2}\], for all \[x\in R\]

Let us prove it by taking \[{{\tan }^{-1}}x=\theta \] ……(i)

Then, \[\theta \in \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right)\text{ }\left\{ \because x\in R \right\}\]

\[\Rightarrow -\dfrac{\pi }{2} < \theta  < \dfrac{\pi }{2}\]

\[\Rightarrow -\dfrac{\pi }{2} < -\theta  < \dfrac{\pi }{2}\]

\[\Rightarrow 0 < \dfrac{\pi }{2}-\theta  < \pi \]

\[\Rightarrow \left( \dfrac{\pi }{2}-\theta  \right)\in \left( 0,\pi  \right)\]

Now consider \[{{\tan }^{-1}}x=\theta \]

Taking $\tan $ on both sides, we get

\[\Rightarrow x=\tan \theta \]

\[\Rightarrow x=\cot \left( \dfrac{\pi }{2}-\theta  \right)\]

\[\Rightarrow {{\cot }^{-1}}x=\dfrac{\pi }{2}-\theta \text{ }\left\{ \because \dfrac{\pi }{2}-\theta \in \left( 0,\pi \right) \right\}\]

\[\Rightarrow \theta +{{\cot }^{-1}}x=\dfrac{\pi }{2}\]   ……(ii)

From (i) and (ii), we get

\[{{\tan }^{-1}}x+{{\cot }^{-1}}x=\dfrac{\pi }{2}\]

c) \[{{\sec }^{-1}}x+\cos e{{c}^{-1}}x=\dfrac{\pi }{2}\], for all \[x\in \left( -\infty ,-1 \right]\cup \left[ 1,\infty  \right)\]

Let us prove it by taking \[{{\sec }^{-1}}x=\theta \]   ……(i)

Then, \[\theta \in \left[ 0,\pi \right]-\left\{ \dfrac{\pi }{2} \right\}\text{ }\left\{ \because x\in \left( -\infty ,-1 \right]\cup \left[ 1,\infty \right) \right\}\]

\[\Rightarrow 0\le \theta \le \pi ,\theta \ne \dfrac{\pi }{2}\]

\[\Rightarrow -\pi \le -\theta \le 0,\theta \ne \dfrac{\pi }{2}\]

\[\Rightarrow -\dfrac{\pi }{2}\le \dfrac{\pi }{2}-\theta \le \dfrac{\pi }{2},\dfrac{\pi }{2}-\theta \ne 0\]

\[\Rightarrow \left( \dfrac{\pi }{2}-\theta  \right)\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right],\dfrac{\pi }{2}-\theta \ne 0\]

Now considering \[{{\sec }^{-1}}x=\theta \]

Taking $\sec $ on both sides, we get

\[\Rightarrow x=\sec \theta \]

\[\Rightarrow x=\cos ec\left( \dfrac{\pi }{2}-\theta  \right)\]

\[\Rightarrow \cos e{{c}^{-1}}x=\dfrac{\pi }{2}-\theta \]

\[\left\{ \because \left( \dfrac{\pi }{2}-\theta  \right)\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right],\dfrac{\pi }{2}-\theta \ne 0 \right\}\]

\[\Rightarrow \theta +\cos e{{c}^{-1}}x=\dfrac{\pi }{2}\]   ….…(ii)

From (i) and (ii), we get

\[{{\sec }^{-1}}x+\cos e{{c}^{-1}}x=\dfrac{\pi }{2}\]

 

5. Property V

  1. \[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\dfrac{x+y}{1-xy},xy < 1\]

  2. \[{{\tan }^{-1}}x-{{\tan }^{-1}}y={{\tan }^{-1}}\dfrac{x-y}{1+xy},xy>-1\]

  3. \[{{\tan }^{-1}}x+{{\tan }^{-1}}y=\pi +{{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right),xy>1;x,y=0\]

Let us prove a) by taking ${{\tan }^{-1}}x=\theta $ and ${{\tan }^{-1}}y=\phi $.

Taking $\tan $ on both sides for both terms, we get $x=\tan \theta $ and $y=\tan \phi $.

Using formula for $\tan \left( A+B \right)=\dfrac{\tan A+tanB}{1-\tan A\tan B}$, we can write

$\tan \left( \theta +\phi  \right)=\dfrac{\tan \theta +tan\phi }{1-\tan \theta \tan \phi }$

Writing in terms of $x\text{ }and\text{ }y$,

$\tan \left( \theta +\phi  \right)=\dfrac{x+y}{1-xy}$

$\Rightarrow \theta +\phi ={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$

Therefore \[{{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\dfrac{x+y}{1-xy},xy < 1\].

Hence proved.

The properties b) and c) can be proved in similar manner by considering $y$ as $-y$ and $y$ as $x$ respectively in the above proof.

 

6.  Property VI

  1. \[2{{\tan }^{-1}}x={{\sin }^{-1}}\dfrac{2x}{1+{{x}^{2}}},\left| x \right|\le 1\]

  2. \[2{{\tan }^{-1}}x={{\cos }^{-1}}\dfrac{1-{{x}^{2}}}{1+{{x}^{2}}},x\ge 0\]

  3. \[2{{\tan }^{-1}}x={{\tan }^{-1}}\dfrac{2x}{1-{{x}^{2}}},-1 < x < 1\]

Let us prove a) by taking ${{\tan }^{-1}}x=y$.

Taking $\tan $ on both sides, we get

$x=\tan y$

We can write ${{\sin }^{-1}}\dfrac{2x}{1+{{x}^{2}}}$ as ${{\sin }^{-1}}\dfrac{2\tan y}{1+{{\tan }^{2}}y}$.

Using formula $\sin 2x=\dfrac{2\tan x}{1+{{\tan }^{2}}x}$, we get

${{\sin }^{-1}}\dfrac{2x}{1+{{x}^{2}}}={{\sin }^{-1}}\left( \sin 2y \right)$

Using ${{\sin }^{-1}}\left( \sin x \right)=x$, this can be written as

${{\sin }^{-1}}\dfrac{2x}{1+{{x}^{2}}}=2y$

$\Rightarrow {{\sin }^{-1}}\dfrac{2x}{1+{{x}^{2}}}=2{{\tan }^{-1}}x$

Hence proved.

The same process can be followed to prove properties b) and c) as well.

 

7.  Property VII

  1. \[\sin \left( {{\sin }^{-1}}x \right)=x\], for all \[x\in \left[ -1,1 \right]\]

  2. \[\cos \left( {{\cos }^{-1}}x \right)=x\], for all \[x\in \left[ -1,1 \right]\]

  3. \[\tan \left( {{\tan }^{-1}}x \right)=x\], for all \[x\in R\]

  4. \[\cos ec\left( \cos e{{c}^{-1}}x \right)=x\], for all \[x\in \left( -\infty ,-1 \right]\cup \left[ 1,\infty  \right)\]

  5. \[\sec \left( {{\sec }^{-1}}x \right)=x\], for all \[x\in \left( -\infty ,-1 \right]\cup \left[ 1,\infty  \right)\]

  6. \[\cot \left( {{\cot }^{-1}}x \right)=x\], for all \[x\in R\]


Let us prove a). We know that, if \[f:A\to B\] is a bijection, then \[{{f}^{-1}}:B\to A\] exists such that \[fo{{f}^{-1}}\left( y \right)=f\left( {{f}^{-1}}\left( y \right) \right)=y\] for all \[y\in B\].

Clearly, all these results are direct consequences of this property.

Aliter: Let \[\theta \in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]\] and \[x\in \left[ -1,1 \right]\] such that \[\sin \theta =x\].

Taking $\sin $ on both sides, \[\theta ={{\sin }^{-1}}x\]

\[\therefore x=\sin \theta =\sin \left( {{\sin }^{-1}}x \right)\]

Hence, \[\sin \left( {{\sin }^{-1}}x \right)=x\] for all \[x\in \left[ -1,1 \right]\] and we proved it.

We can prove properties from b) to f) in a similar manner.

It should be noted that, \[{{\sin }^{-1}}\left( \sin \theta  \right)\ne \theta \], if \[\notin \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]\].

Let us understand this better. The function \[y={{\sin }^{-1}}\left( \sin x \right)\] is periodic and has period \[2\pi \].

To draw this graph, we should draw the graph for one interval of length \[2\pi \] and repeat the entire values of x.

As we know,

\[{{\sin }^{-1}}\left( \sin x \right)=\left\{ \begin{align} & x;\text{ }-\dfrac{\pi }{2}\le x\le \dfrac{\pi }{2} \\ & \left( \pi -x \right);\text{ }-\dfrac{\pi }{2}\le \pi -x < \dfrac{\pi }{2}\left( \text{i}\text{.e}\text{.,}\dfrac{\pi }{2}\le x\le \dfrac{3\pi }{2} \right) \\ \end{align} \right.\]

\[\Rightarrow {{\sin }^{-1}}\left( \sin x \right)=\left\{ \begin{align} & x,\text{ }-\dfrac{\pi }{2}\le x\le \dfrac{\pi }{2} \\ & \pi -x,\text{ }\dfrac{\pi }{2}\le x\le \dfrac{3\pi }{2}, \\ \end{align} \right.\]

This is plotted as

This is plotted as


Thus, we can note that the graph for \[y={{\sin }^{-1}}\left( \sin x \right)\] is a straight line up and a straight line down with slopes \[1\] and \[-1\] respectively lying between \[\left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right]\].

The below result for the definition of \[{{\sin }^{-1}}\left( \sin x \right)\] must be kept in mind. \[y={{\sin }^{-1}}\left( \sin x \right)=\left\{ \begin{align} & x+2\pi ;\text{ }-\dfrac{5\pi }{2}\le x\le -\dfrac{3\pi }{2} \\ & -\pi -x;\text{ }-\dfrac{3\pi }{2}\le x\le -\dfrac{\pi }{2} \\ & x;\text{ }-\dfrac{\pi }{2}\le x\le \dfrac{\pi }{2} \\ & \pi -x;\text{ }\dfrac{\pi }{2}\le x\le \dfrac{3\pi }{2} \\ & x-2\pi ;\text{ }\dfrac{3\pi }{2}\le x\le \dfrac{5\pi }{2}\text{ }...\text{and so on} \\ \end{align} \right.\]

Now we consider \[y={{\cos }^{-1}}\left( \cos x \right)\] which is periodic and has period \[2\pi \].

To draw this graph, we should draw the graph for one interval of length \[2\pi \] and repeat the entire values of \[x\] of length \[2\pi \]        

As we know,

\[{{\cos }^{-1}}\left( \cos x \right)=\left\{ \begin{align} & x;\text{ }0\le x\le \pi \\ & 2\pi -x;\text{ }0\le 2\pi -x\le \pi , \\ \end{align} \right.\] \[\Rightarrow {{\cos }^{-1}}\left( \cos x \right)=\left\{ \begin{align} & x;\text{ }0\le x\le \pi \\ & 2\pi -x;\text{ }\pi \le x\le 2\pi , \\ \end{align} \right.\]

Thus, it has been defined for \[0 < x < 2\pi \] that has length \[2\pi \].

So, its graph could be plotted as;

the curve


Thus, the curve \[y={{\cos }^{-1}}\left( \cos x \right)\] and we can not the results as \[{{\cos }^{-1}}\left( \cos x \right)=\left\{ \begin{align} & -x,\text{ if x}\in \left[ -\pi ,0 \right] \\ & x,\text{ if x}\in \left[ 0,\pi \right] \\ & 2\pi -x,\text{ if x}\in \left[ \pi ,2\pi \right] \\ & -2\pi +x,\text{ if x}\in \left[ 2\pi ,3\pi \right]\text{ and so on}\text{.} \\ \end{align} \right.\]

Next, we consider \[y={{\tan }^{-1}}\left( \tan x \right)\] which is periodic and has period \[\pi \].

To draw this graph, we should draw the graph for one interval of length \[\pi \] and repeat the entire values of x.

We know \[{{\tan }^{-1}}\left( \tan x \right)=\left\{ x;-\dfrac{\pi }{2} < x < \dfrac{\pi }{2} \right\}\]. Thus, it has been defined for \[-\dfrac{\pi }{2} < x < \dfrac{\pi }{2}\] that has length \[\pi \].

The graph is plotted as

the curve for


Thus, the curve for \[y={{\tan }^{-1}}\left( \tan x \right)\], where \[y\] is not defined for \[x\in \left( 2n+1 \right)\dfrac{\pi }{2}\]. The below result can be kept in mind.

\[{{\tan }^{-1}}\left( \tan x \right)=\left\{ \begin{align} & -\pi -x,\text{ if x}\in \left[ -\dfrac{3\pi }{2},-\dfrac{\pi }{2} \right] \\ & x,\text{ if x}\in \left[ -\dfrac{\pi }{2},\dfrac{\pi }{2} \right] \\ & x-\pi ,\text{ if x}\in \left[ \dfrac{\pi }{2},\dfrac{3\pi }{2} \right] \\ & x-2\pi ,\text{ if x}\in \left[ \dfrac{3\pi }{2},\dfrac{5\pi }{2} \right]\text{ and so on}\text{.} \\ \end{align} \right.\]

Additional Formulas

  1. \[{{\sin }^{-1}}x+{{\sin }^{-1}}y={{\sin }^{-1}}\left( x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}} \right)\]

  2. \[{{\sin }^{-1}}x-{{\sin }^{-1}}y={{\sin }^{-1}}\left( x\sqrt{1-{{y}^{2}}}-y\sqrt{1-{{x}^{2}}} \right)\]

  3. \[{{\cos }^{-1}}x+{{\cos }^{-1}}y={{\cos }^{-1}}\left( xy-\sqrt{1-{{x}^{2}}}\sqrt{1-{{y}^{2}}} \right)\]

  4. \[{{\cos }^{-1}}x-{{\cos }^{-1}}y={{\cos }^{-1}}\left( xy+\sqrt{1-{{x}^{2}}}\sqrt{1-{{y}^{2}}} \right)\]

  5. \[{{\tan }^{-1}}x+{{\tan }^{-1}}y+{{\tan }^{-1}}z={{\tan }^{-1}}\left[ \dfrac{x+y+z-xyz}{1-xy-yz-zx} \right]\], if \[x>0,y>0,z>0\And xy+yz+zx < 1\]

  6. \[{{\tan }^{-1}}x+{{\tan }^{-1}}y+{{\tan }^{-1}}z=\pi \] when \[x+y+z=xyz\]

  7. \[{{\tan }^{-1}}x+{{\tan }^{-1}}y+{{\tan }^{-1}}z=\dfrac{\pi }{2}\] when \[xy+yz+zx=1\]

  8. \[{{\sin }^{-1}}x+{{\sin }^{-1}}y+{{\sin }^{-1}}z=\dfrac{3\pi }{2}\text{; }x=y=z=1\]

  9. \[{{\cos }^{-1}}x+{{\cos }^{-1}}y+{{\cos }^{-1}}z=3\pi ;\text{ }x=y=z=-1\]

  10. \[{{\tan }^{-1}}1+{{\tan }^{-1}}2+2{{\tan }^{-1}}3={{\tan }^{-1}}1+{{\tan }^{-1}}\dfrac{1}{2}+{{\tan }^{-1}}\dfrac{1}{3}=\dfrac{\pi }{2}\]


5 Important Formulas for Maths Class 12 Chapter 2 You Shouldn’t Miss!

S.No.

Important Formulas

1.

sin−1(x) Formula: $\sin(\theta) = x \text{ and } -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$

2.

cos−1(x) Formula: $\cos^{-1}(x) = \theta \text{ where } \cos(\theta) = x \text{ and } 0 \leq \theta \leq \pi$

3.

tan⁡−1(x)\tan^{-1}(x)tan−1(x) Formula: $\tan^{-1}(x) = \theta \text{ where } \tan(\theta) = x \text{ and } -\frac{\pi}{2} < \theta < \frac{\pi}{2}$

4.

Addition Formula for sin⁡−1\sin^{-1}sin−1: $\sin^{-1}(x) + \sin^{-1}(y) = \sin^{-1}\left(x\sqrt{1 - y^2} + y\sqrt{1 - x^2}\right) \text{ if } |x|, |y| \leq 1$

5.

Addition Formula for cos⁡−1\cos^{-1}cos−1: $\cos^{-1}(x) + \cos^{-1}(y) = \pi - \cos^{-1}\left(xy - \sqrt{(1 - x^2)(1 - y^2)}\right) \text{ if } |x|, |y| \leq 1$



Importance of Maths Chapter 2 Notes Inverse Trigonometric Functions Class 12

  • These notes simplify the understanding of inverse trigonometric functions, which are essential for solving complex maths problems.

  • They help students grasp the concept of principal value branches, which is important for accurate calculations.

  • The notes clarify the domain and range of inverse trigonometric functions, which is important for solving equations.

  • They enhance problem-solving skills by providing clear explanations and examples of how these functions are used in various mathematical contexts.

  • Inverse Trigonometric Functions Class 12 Notes PDF aligns with the CBSE Class 12 Maths syllabus, helping students prepare effectively and confidently for board exams.


Tips for Learning the Class 12 Science Chapter 2 Inverse Trigonometric Functions

  • Start by thoroughly understanding the basic concepts of trigonometric functions, as this foundation is crucial for grasping inverse trigonometric functions.

  • Focus on principal value branches, as they can be challenging; practice identifying them for different functions.

  • Ensure you understand the domain and range of each inverse trigonometric function by practising related problems.

  • Study the graphs of inverse trigonometric functions to grasp their behaviour and range.

  • Practice solving various problems involving inverse trigonometric functions to solidify your understanding and prepare for exams.


Conclusion

The Revision Notes for Class 12 Maths Chapter on Inverse Trigonometric Functions simplify complex ideas, making them easier to grasp. They clearly explain key concepts such as principal value branches, domain, range, and the properties of inverse trigonometric functions. Inverse Trigonometric Functions Class 12 Notes PDF include helpful summaries and practice problems to reinforce learning. This chapter demonstrates how inverse trigonometric functions work and how to solve related problems. Regularly reviewing these notes will help students master the topic and perform better in their Class 12 Maths exams.


Related Study Materials for Class 12 Maths Chapter 2 Inverse Trigonometric Functions



Chapter-wise Revision Notes Links for Class 12 Maths



Important Study Materials for Class 12 Maths

FAQs on Inverse Trigonometric Functions Class 12 Notes: CBSE Maths Chapter 2

1. Find the value of x, if sin (x) = 2 in Inverse Trigonometric Functions Notes.

We know that sin x = 2,

X = sin-1 (2), this is not possible

This means that there is no value of x for which sin x = 2. This is true since the domain of sin-1x is -1 to 1 for the value of x.

2. What is the value of sin-1 (sin (π / 6)) form Inverse Trigonometric Functions Notes?

sin-1 (sin (π / 6)) = π / 6

We have arrived at the above answer by using the sin-1 (sin (x) ) = x identity.

3. What is the value of sin (cos-1 3 / 5) in Inverse Trigonometric Functions Class 12 Notes PDF?

Let’s suppose that cos-1 3 /5 = x

This means that cos x = 3 / 5

We also know that sin x = √1 - cos2 x

So, sin x = √1 - 9 / 25 = 4 / 5

This means that sin x = sin (cos-1 3 / 5) = 4 / 5.

4. Find the value of sin (cot - 1x) from Inverse Trigonometric Functions Notes.

Let’s assume that cot-1 x = θ

X = cotθ

Now, cosec θ = √1 + cot2θ  = √1 + x2

Hence, sinθ = 1 / cos ec θ = 1 / √1 + x2

Θ = sin-1 1 / √1 + x2

Hence, sin (cot - 1x) = sin (sin-1 x 1 / √1 + x2 = 1 /√ 1 + x2 = (1 + x2)-1 / 2.

5. What is the value of sec-1 

sec(−30degrees)

sec(−30degrees) in Inverse Trigonometric Functions Notes.

sec-1 [sec (-30 degrees)] = sec-1 (sec 30 degrees) = 30 degrees.

6. Where can I download the latest Chapter 2 Inverse Trigonometric functions of Class 12 Maths notes?

You can download the Inverse Trigonometric Functions Class 12 Notes PDF from the Vedantu website. Here at Vedantu, you will find all revision notes from which you can study.

  • Click on the download pdf option. 

  • Once the revision notes pdf is saved on your device, you can use it to study later offline.

7. What are the various functions discussed in Chapter 2 Inverse Trigonometry Class 12 Notes?

As per the syllabus of Class 12 Maths CBSE, the second chapter in the Maths textbook of Class 12 is inverse trigonometric functions. Previously, you have learnt about trigonometric functions and keeping that knowledge and concepts in mind, you will easily be able to understand this particular chapter. You will learn about the inverse functions of trigonometry like arcsine, arctangent, arccosine, arccotangent, arcsecant, arccosecant functions. You will need to understand these topics to solve the sums from the chapter.


These solutions are available on Vedantu's official website(vedantu.com) and mobile app free of cost.

8. What are the topics in Chapter 2 Inverse Trigonometry Class 12 Notes?

Chapter 2 Inverse Trigonometric functions of Class 12 Maths deals with the Inverse Trigonometric Functions. You will have to study various subtopics like inverse functions, equations using these inverse functions, and the graphs pertaining to these. You will also have to memorize the important formulas given in the chapter to be able to solve the questions. You must be acquainted with the notations and symbols for the various functions so that it becomes easier to move forward.

9. How can I get all trigonometry questions right in the Class 12 Maths exam?

It is not a very big deal to be able to get all the sums correct from the trigonometry section in your board exam. The key to getting full marks is practice. You must be consistent with your practice and solve as many sums as possible from the trigonometry chapter in order to be confident and accurate. This will enhance your concepts and problem solving skills as well. Apart from this, you must not forget to refer to mock papers and previous year papers to understand the pattern and prepare accordingly.

10. What is meant by inverse trigonometric functions according to Chapter 2 Inverse Trigonometry Class 12 Notes?

In your previous chapter, you gathered ideas about the normal trigonometry, its functions, derivatives etc. Now when you study inverse trigonometry, it is nothing but the inverse or the reciprocal of the actual one. That is, all the functions, angles, derivatives, formulas etc. everything will be written as the reciprocal or opposite of the corresponding trigonometric functions, angles, derivatives , formulas etc. You must refer to the Vedantu explanation of this chapter in order to understand clearly.