Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Parallel Evolution: What Does it Entail?

share icon
share icon
banner

Introduction to Parallel Evolution

Introduction

Parallel evolution is the type of evolution when two types of species evolve together and starts acquiring the same characteristics as each other at the same time.

These groups of species are geographically separated but they have the same morphological resemblances.

Introduction to Types of Evolution

There are three distinct types of evolutions: Divergent, Parallel and Convergent.


In convergent evolution, similar types of traits start evolving independently of each other. Homologous structures are formed from convergent evolution.


Divergent evolution occurs when two populations are separated by a geographical barrier and are subjected to divergent selective forces that promote adaptations to their new habitat.


Parallel evolution happens when two distinct species evolve in the same direction and so acquire identical characteristics independently, for example, gliding frogs evolved in parallel from several different types of tree frogs. Convergent evolution in plants can be shown in the development of C4 photosynthesis, and seed dispersal via fleshy fruits meant for animal consumption and carnivory

Characteristics of Parallel Evolution Theory

If the ancestors shared that resemblance, the evolution of that character in those species is characterised as parallel; if they did not, the development of that character in those species is said to be convergent. Parallel evolution and convergent evolution, according to some biologists, are nearly indistinguishable.


The distinction between parallel and convergent evolution becomes more subjective when the ancestral forms are unidentified or unknown, or when the range of features evaluated is not specified. The apparent similarity between placental and marsupial forms, for example, is the result of convergent evolution.

Example of Parallel Evolution

Some very common examples of parallel evolution include:

  • Many diverse species have evolved colouration that serves as a warning to predators and for mating displays.

  • The most well-known instances of parallel evolution in the plant kingdom are leaf shapes, which have evolved repeatedly in different genera and families with extremely similar patterns.

  • It has been proposed that populations of Arabidopsis thaliana adapt to the local environment through parallel evolution.

  • The patterns of wing colouration in butterflies are strikingly similar, both within and between groups.

Parallel Evolution Between Marsupials and Placentals

The two main lineages of mammals, placentals and marsupials, have followed separate evolutionary paths following the break-up of landmasses such as Gondwanaland around 100 million years ago, and give many examples of parallel evolution. Before the Great American Interchange, marsupials and placentals shared the same ecology in South America, marsupials won in Australia, while placentals won in North America.


However, until the cataclysmic extinction of dinosaurs 65 million years ago, mammals were small and occupied just a small portion of the environment in all of these locations. Mammals on all three continents began to take on a far broader range of shapes and functions. While certain animals were unique to each environment, comparable animals frequently appeared on two or three of the continents that were separated. The placental sabre-toothed cats (Machairodontinae) and the South American marsupial sabre-tooth (Thylacosmilus) are examples, as are the Tasmanian and European wolves, as well as marsupial and placental moles, flying squirrels, and mice.

Genetic Role in Parallel Evolution

The first factor is a similarity between organisms. Jellyfish and anemones have a radial body layout, which means they don't have a left or right side. However, a signature for a bilateral body design has been discovered in their genetic coding. It doesn't appear to be expressed in jellyfish for some reason.


The experimental evidence is the second factor to consider. Parallel evolution has recently been studied by biologists who have gone beyond morphology. They discovered evidence that physical similarities were matched by genetic similarities in at least some cases. In two species that had been separated for millions of years, the chemical interactions of proteins and amino acids that induce morphological changes were also the same.

Conclusion

It is very well clear that evolution is a complex process. Hence, there are several factors that aid or cause the changes occurring in the process of evolution. The theory of parallel evolution plays a significant role in the explanation of the development of organisms and species as a whole along with other theories of divergent and convergent evolution. Of all of them, parallel evolution best explains why some species that have been distinctly related to each other over generations share certain similar characteristics in phenotypes and/or genotypes that could have come from a single ancestral source.

Want to read offline? download full PDF here
Download full PDF
Is this page helpful?
like-imagedislike-image

FAQs on Parallel Evolution: What Does it Entail?

1. What is an example of parallel evolution?

Parallel evolution happens when independent species evolve in the same ecospace at the same time and acquire identical features. Extinct browsing horses and paleotheres are examples of parallel evolution. As a result of convergent evolution, they become more similar over time.

2. What is the difference between convergent and parallel evolution?

In parallel evolution, two species are separated geographically and they evolve together at the same time and start acquiring the same characteristics. Convergent evolution is also similar to parallel evolution but here the two species are similar and independent of each other starts to evolve in the same direction and starts acquiring similar characteristics. 

3. What causes parallel evolution?

Parallel evolution is sometimes misinterpreted by evolutionary biologists as being driven by selection. Parallel evolution is most likely to be associated with loci that are both under strong selection and have a tendency to create higher quantities of selection-relevant variation than others.

4. Which is a very good example of parallel evolution?

One of the best examples of parallel evolution is given by the two main branches of mammals, the placentals and marsupials. This is because they have followed independent evolutionary pathways following the break-up event of landmasses suchas Gondwanaland roughly 100 million years ago.

5. Why is parallel evolution important?

It demonstrates that even the most rudimentary species can have the genetic tools to develop greater complexity. Because the possibility for certain features was present from the start, geographically separated species can gain similar traits as the organism matures.


Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow