Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

CBSE Class 11 Maths Important Questions - Chapter 10 Conic Sections

ffImage
banner

Important Questions for CBSE Class 11 Maths Chapter 10 Conic Sections FREE PDF Download

Conic Sections form one of the most interesting chapter of the Class 11 Maths Syllabus, dealing with curves like circles, parabolas, ellipses, and hyperbolas. This chapter explains the equations and properties of these curves, helping students understand their significance in both geometry and real-life applications.

toc-symbolTable of Content
toggle-arrow


To help you prepare effectively, we have created a list of important questions for Chapter 10 Conic Sections. These questions are aligned with the CBSE syllabus and include step-by-step solutions. Download the FREE PDF of Class 11 Maths Important Questions for offline practise and ensure you are ready for your exams

Courses
Competitive Exams after 12th Science

Access NCERT Solutions for Maths Class 11 - Chapter 10 – Conic Sections

Very Short Answer Questions: (1 Marks)

1. Find the equation of a circle with centre (P,Q) & touching the y -  axis

(A) x2+y2+2Qy+Q2=0

(B)  x2+y22px2Qy+Q2=0

(C) x2+y22px+2Qy+Q2=0

(D) None of these

Ans: x2+y22px2Qy+Q2=0


2. Find the equations of the directrix & the axis of the parabola 3x2=8y

(A) 3y4=0, x=0

(B) 3x2=0, X=0

(C) 3y4x=0

(D) None of these

Ans: 3y4=0, x=0


3. Find the coordinates of the foci of the ellipse x2+4y2=100

(A) F(±53,0)

(B) F(±35,0)

(C) F(±45,0)

(D) None of these

Ans: F(±53,0)


4. Find the eccentricity of the hyperbola: 3x22y2=6

  1. e=52

  2. e=52

  3. e=25

  4. None of these

Ans: e=52


5. Find the equation of a circle with centre (b,a) & touching x axis?

  1. x2+y22bx+2ay+b2=0

  2. x2+y2+2bx2ay+b2=0

  3. x2+y22bx2ay+b2=0

  4. None of these

Ans: x2+y22bx2ay+b2=0


6. Find the length of the latus rectum of 2x2+3y2=18?

  1. 2 units

  2. 3 units

  3. 4 units

  4. None of these

Ans: 4 units


7. Find the length of the latus rectum of the parabola 3y2=8x

  1. 43 units

  2. 83 units

  3. 23 units

  4. None of these

Ans: 83 units


8. The equation x2+y212x+8y72=0 represent a circle find its centre

  1. (6,4)

  2. (6,4)

  3.  (6,4)

  4. (6,4)

Ans: (6,4)


9. Find the equation of the parabola with focus F(4,0) & directrix x=4

  1. y2=32x

  2. y2=16x

  3. y2=8x

  4. y2=16x

Ans: y2=16x


10. Find the coordinates of the foci of x28+y24=1

  1. F1(2,0)& F2(2,0)

  2. F1(2,0)& F2(2,0)

  3. F1(2,0)& F2(2,0)

  4. None of these

Ans: F1(2,0)& F2(2,0)


11. Find the coordinates of the vertices of x2y2=1

  1. A(1,0), B(1,0)

  2. A(1,0), B(1,0)

  3. A(1,0), B(1,0)

  4. None of these

Ans: A(1,0), B(1,0)


13. Find the eccentricity of ellipse 4x2+9y2=1

  1. e=53

  2. e=53

  3. e=35

  4. e=35

Ans: e=53


14. Find the length of the latus rectum of 9x2+y2=36

  1. 13 units

  2. 15 units

  3. 113 units

  4. 16 units

Ans: 113 units


15. Find the length of minor axis of x2+4y2=100

  1. 10 units

  2. 12 units

  3. 14 units

  4. 8 units

Ans: 10 units 


16. Find the centre of the circles x2+(y1)2=2

  1. (1,0)

  2. (0,1) 

  3. (1,2) 

  4. None of these

Ans: (0,1)


17. Find the radius of circles x2+(y1)2=2

  1. 2

  2. 2 

  3. 22 

  4. None of these

Ans: 2


18. Find the length of latus rectum of x2=22y

  1. 11

  2. 22 

  3. 22 

  4. None of these

Ans: 22


19. Find the length of latus rectum of 25x2+4y2=100

  1. 35 units

  2. 15 units 

  3. 85 units 

  4. None of these

Ans: 85 units


Long Answer Questions: (4 Marks)

1. Show that the equation x2+y26x+4y36=0 represents a circle, also find its centre & radius?

Ans: It is of the form x2+y2+2gx+2Fy+c=0,

Where 2g=6, 2f=4& c=36

g=3, f=2& c=36

Thus, center of the circle is (g,f)=(3,2)

Radius of the circle is g2+f2c=9+4+36

=7 units


2. Find the equation of an ellipse whose foci are (±8,0) & the eccentricity is 14 ?

Ans: Let the required equation of the ellipse be x2a2+y2b2=1, where a2>b2

Let the foci be (±c,0), c=8

And e=ca

a=ce

a=814

a=32

As c2=a2b2

b2=a2c2

b2=102464

b2=960

a2=1024

& b2=960

Therefore the equation is x21024+y2960=1


3. Find the equation of an ellipse whose vertices are (0,±10)& e=45

Ans: Let equation be x2b2+y2a2=1

Vertices are (0,±a), a=10

Let c2=a2b2

So, e=ca

c=ae

c=10×45

c=8

Now, c2=a2b2

b2=(a2c2)

b2=10064

b2=36

So, a2=(10)2=100 & b2=36

Therefore the equation is x236+y2100=1


4. Find the equation of hyperbola whose length of latus rectum is 36 & foci are (0,±12)

Ans: It is clear that c=12.

Length of latus rectum =36

2b2a=36

b2=18a

Now, c2=a2+b2

a2=c2b2

a2=14418a

a2+18a144=0

(a+24)(a6)=0

a=6 because a is non-negative.

Thus a2=62=36 & b2=108

Therefore, x236+y2108=1


5. Find the equation of a circle drawn on the diagonal of the rectangle as its diameter, whose sides are x=6, x=3, y=3 & y=1

Ans: Let ABCD be the given rectangle and AD=x=3, BC=x=6, AB=y=1 & CD=y=3.

Then A(3,1) and C(6,3).

The equation of the circle with AC as diameter is:

(x+3)(x6)+(y+1)(y3)=0

x2+y23x2y21=0


6. Find the coordinates of the focus & vertex, the equations of the directrix & the axis & length of latus rectum of the parabola x2=8y

Ans: x2=8y & x2=4ay

So, 4a=8

a=2

So it is downward parabola.

Foci is F(0,a) i.e. F(0,2).

Vertex is O(0,0).

So, y=a=2.

Its axis is y axis, whose equation is given by x=0.

Length of latus rectum=4a units.

=4×2 units

=8 units


7. Show that the equation 6x2+6y2+24x36y18=0 represents a circle. Also find its centre & radius.

Ans: 6x2+6y2+24x36y18=0

So, x2+y2+4x6y+3=0

Where, 2g=4, 2f=6 & c=3

g=2, f=3 & c=3

Thus, centre of circle is (g,f)=(2,3)

Radius of circle =4+9+9=20

=25 units


8. Find the equation of the parabola with focus at F(5,0) & directrix is x=5

Ans: F(5,0) lies on the right hand side of origin.

Thus, it is a right hand parabola.

Let the required equation be

y2=4ax & a=5

Hence, y2=20x


9. Find the equation of the hyperbola with center at the origin, length of the transverse axis 6 & one focus at (0,4)

Ans: Let its equation be y2a2x2b2=1

It is clear that c=4.

Length of the transverse axis =6

2a=6

a=3

And, c2=(a2+b2)

b2=c2a2

b2=169

b2=7

Thus, a2=9 & b2=7

Hence, equation is x29x27=1


10. Find the equation of an ellipse whose vertices are (0,±13) & the foci are (0,±5)

Ans: Let the equation be x2b2+y2a2=1

& a=13

Let foci be (0,±c),

c=5

b2=a2c2

b2=16925

b2=144

a2=169

And b2=144

Thus, equation is x2144+y2169=1


11. Find the equation of the ellipse whose foci are (0,±3) & length of whose major axis is 10

Ans:Let the required equation be x2b2+y2a2=1

Let c2=a2b2

Foci are (0,±c) & c=3

a=length of the semi- major axis i.e. 12×10=5

So, c2=a2b2

b2=a2c2

b2=253

b2=16

Thus, a2=25 & b2=16

So, the required equation is x216+y225=1.


12. Find the equation of the hyperbola with centre at the origin, length of the transverse axis 8 & one focus at (0,6)

Ans: Let its equation by y2a2x2b2=1

It is clear that c=6 

And the length of the transverse axis =8

2a=8

a=4

And, c2=a2+b2

b2=c2a2

3616=20

So, a2=16 & b2=20

So, the required equation is y216x220=1


13. Find the equation of the hyperbola whose foci are at (0,±B) & the length of whose conjugate axis is 211

Ans: Let equation be y2a2x2b2=1

Let foci be (0,±c)

c=8

Length of conjugate axis =211

2b=211

b=11

b2=11

And, c2=(a2+b2)

a2=(c2b2)

a2=6411

a2=53

So, the required equation is y253x211=1


14. Find the equation of the hyperbola whose vertices are (0,±3) & foci are (0,±8)

Ans: Vertices are (0±a)

It is given that the vertices are (0±3)

a=3

Let foci be (0,±c)

It is given that the foci are (0,±8)

c=8

And b2=(c2a2)

b2=8232

b2=649

b2=55

Now, a2=32=9 & b2=55.

So, the required equation is y29x255=1


15. Find the equation of the ellipse for which e=45 & whose vertices are (0.±10).

Ans: Vertices are (0,±a) 

So, a=10

Let c2=(a2b2)

e=ca

c=ae

c=[10×45]

c=8

And, c2=(a2b2)

b2=(a2c2)

b2=(10064)

b2=36

a2=(10)2=100 & b2=36

So, the required equation is x236+y2100=1


16. Find the equation of the parabola with vertex at the origin & y+5=0 as its directrix. Also, find its focus

Ans: Let the vertex of the parabola be O(0,0).

y+5=0

y=5

The directrix is a line parallel to the xaxis at a distance of 5 units below the xaxis. Thus, the focus is F(0,5).

So, the equation of the parabola is x2=4ay where a=5 i.e. x2=20y.


17. Find the equation of a circle, the end points of one of whose diameters are A(2,3)& B(3,5)

Ans: Let the end points of one of whose diameters are (x1,y1) and (x2,y2) is given by

(xx1)(xx2)+(yy1)(yy2)=0

So, x1=2, y1=3 & x2=3, y2=5.

The required equation of the circle is (x2)(x+3)+(y+3)(y5)=0

x2+y2+x2y21=0


18. Find the equation of ellipse whose vertices are (0,±13) & the foci are (0,±5)

Ans: Let the required equation be x2b2+y2a2=1.

Its vertices are (0±a).

So, a=13

Let its foci be (0±c) then c=5.

b2=a2c2

b2=16925

b2=144

Thus b2=144 and a2=169.

So, the required equation is x2144+y2169=1.


19. Find the equation of the hyperbola whose foci are (±5,0) & the transverse axis is of length 8.

Ans: Let the required equation be x2a2y2b2=1

Length of transverse axis=2a.

2a=8

a=4

a2=16

Let its foci be (±c,0).

So, c=5.

b2=(c2a2)

b2=5242

b2=9

Thus a2=16 and b2=9

Therefore, the required equation is x216y29=1.


20. Find the equation of a circle, the end points of one of whose diameters are A(3,2)& B(5,3)

Ans: Let the equation be (xx1)(xx2)+(yy1)(yy2)=0

So x1=3, y1=2 and x2=5, y2=3.

(x+3)(x5)+(y2)(y+3)=0

x22x15+y2+y6=0

x2+y22x+y21=0


21. If eccentricity is 15 & foci are (±7,0) find the equation of an ellipse.

Ans: Let the required equation of the ellipse be x2a2+y2b2=1.

Let its foci be (±c,0).

So, c=7.

And e=ca

a=ce

a=715

a=35

Also c2=(a2b2)

b2=a2c2

b2=(35)249

b2=122549

b2=1176

a2=1225 and b2=1176.

So, the required equation is x21225+y21176=1


22. Find the equation of the hyperbola whose foci are (±5,0) & the transverse axis is of length

Ans: Let the required equation be x2a2y2b2=1

Length of its transverse axis =2a

2a=8

a=4

a2=16

Let its foci be (±c,0)

So, c=5.

b2=c2a2

b2=2516

b2=9

So, the required equation is x216y29=1


23. Find the length of axes & coordinates of the vertices of the hyperbola x249y264=1

Ans: The equation of the given hyperbola is x249y264=1

Compare the given equation with x2a2y2b2=1.

a2=49 and b2=64.

c2=(a2+b2)

c2=49+64

c2=113

Length of transverse axis is 2a=2×7=14 units

Length of conjugate axis is 2b=2×8=16 units

The coordinates of the vertices are A(a,0) and B(a,0) i.e. A(7,0) and B(7,0).


24. Find the lengths of axes & length of latus rectum of the hyperbola, y29x216=1

Ans: The given equation is y29x216=1.

Compare the given equation with y2a2x2b2=1.

a2=9 & b2=16

Length of transverse axis is 2a=2×3=6 units

Length of conjugate axis is 2b=2×4=8 units

The coordinates of the vertices are A(0,a) and B(0,a) i.e. A(0,3) and B(0,3).


25. Find the eccentricity of the hyperbola of y29x216=1

Ans: Here, a=3 and b=4

And c2=a2+b2

c2=9+16

c2=25

Thus, c=5

e=ca

e=53


26. Find the equation of the ellipse, the ends of whose major axis are (±3,0) & at the ends of whose minor axis are (0,±4)

Ans: Let the required equation be x2a2+y2b2=1

Its vertices are (±a,0).

So, a=3.

Ends of minor axis are C(0,4) and D(0,4).

CD=8 i.e. length of the minor axis=8 units

2b=8

b=4

a=3 and b=4.

Therefore, the required equation is x29+y216=1.


27. Find the equation of the parabola with focus at F(4,0) & directrix x=3

Ans: Focus F(4,0) lies on the axis hand side of the origin.

Thus, it is a right handed parabola.

Let the required equation be y2=4ax.

Then, a=4.

So, the required equation is y2=16x.


28. If y=2x is a chord of the circle x2+y210x=0, find the equation of the circle with this chord as a diameter

Ans: y=2x and x2+y210x=0

Put y=2x in x2+y210x=0.

5x210x=0

5x(x2)=0

x=0 or x=2

Now, x=0y=0 and x=2y=4.

The points of intersection of the given chord and the given circle areA(0,0) and B(2,4).

The required equation of the circle with AB as diameter is (x0)(x2)+(y0)(y4)=0

x2+y22x4y=0


Very Long Answer Questions: (6 Marks)

1. Find the length of major & minor axis- coordinates of vertices & the foci, the eccentricity & length of latus rectum of the ellipse 16x2+y2=16

Ans: 16x2+y2=16

Divide by 16,

x2+y216=1

i.e. b2=1 and a2=16

So, b=1 & a=4.

And c=a2b2

c=161

c=15

So, a=4, b=1 & c=15.

(i) Length of major axis=2a=2×4=8 units

Length of minor axis=2b=2×1=2 units

(ii) Coordinates of the vertices are A(a,0) & B(a,0) i.e. A(4,0) & B(4,0)

(iii) Coordinates of foci are F1(c,0) & F2(c,0) i.e. F1(15,0) & F2(15,0)

(iv) Eccentricity, e=ca=154

(v) Length of latus rectum=2b2a=24=12 units


2. Find the lengths of the axis, the coordinates of the vertices & the foci the eccentricity & length of the latus rectum of the hyperbola 25x29y2=225

Ans: 25x29y2=225

x29y225=1

Now, a2=9 & b2=25

And c=a2+b2

c=9+25

c=34

(i) Length of transverse axis =2a=2×3=6 units

Length of conjugate axis =2b=2×5=10 units

(ii) The coordinates of vertices are A(a,0) & B(a,0) i.e. A(3,0) & B(3,0)

(iii) The coordinates of foci are F1(c,0) & F2(c,0) i.e. F1(34,0) & F2(34,0)

(iv) Eccentricity, e=ca=343

(v) Length of the latus rectum =2b2a=503 units


3. A man running in a race course notes that the sum of the distances of the two flag posts from him is always 12 m& the distance between the flag posts is 10 m. Find the equation of the path traced by the man.

Ans: Ellipse is the locus of a point that moves in such a way that the sum of its distances from two fixed points is constant.

Thus, the path is an ellipse.

Let the equation of the ellipse be x2a2+y2b2=1.

Where b2=a2(1c2)

It is clear that 2a=12 & 2ae=10

a=b and e=56

b2=a2(1e2)

b2=36(12536)

b2=11

So, the required equation is x236+y211=1.


4. An equilateral triangle is inscribed in the parabola y2=4ax so that one angular point of the triangle is at the vertex of the parabola. Find the length of each side of the triangle.

Ans: Let OPQ be an equilateral triangle inscribed in the parabola y2=4ax where O(0,0) is the vertex so that POM=QOM=30.

Let OP=OQ=r.

And P=(rcos30,rsin30)

P=(r32,r2)

P lies on parabola. 

r24=4a(r32)

r=8a3

Hence, the length of each side of the triangle is 8a3 units.


5. Find the equation of the hyperbola whose foci are at (0,±10) & which passes through the points (2,3)

Ans: Let equation be y2a2x2b2=1 ...(i)

Let foci be (0,±c).

But the foci are (0,±10).

c=10

c2=10

(a2+b2)=10 ...(ii)

As (i) passes through (2,3),

9a24b2=1

9a24(10a2)=1

9(10a2)4a2=a2(10a2)

a423a2+90=0

(a218)(a25)=0

a2=5

a2=18b2=8, which is impossible

So, a2=5 and b2=5.

So, the required equation is y25x25=1,

i.e. y2x2=5.


6. Find the equation of the curve formed by the set of all these points the sum of whose distance from the points A(4,0,0) & B(4,0,0) is 10 units.

Ans: Let P(x,y,z) be an arbitrary point on the given curve.

So, PA+PB=10

(x4)2+y2+z2+(x+4)2+y2+z2=10

=(x+4)2+y2+z2=10(x4)2+y2+z2

Squaring both sides:

(x+4)2+y2+z2=100+(x4)2+y2+z220(x4)2+y2+z2

16x=10020(x4)2+y2+z2

5(x4)2+y2+z2=254x

25[(x4)2+y2+z2]=625+16x2200x

9x2+25y2+25z2225=0

So, the required equation of the curve is 9x2+25x2+25z2225=0.


7. Find the equation of the ellipse with centre at the origin, major axis on the yaxis & passing through the points (3,2) & (1,6)

Ans: Let the required equation be x2b2+y2a2=1 ...(i)

Since (3,2) lies on (i), 9b2+4a2=1 (ii)

As (1,6) lies on (i), 1b2+36a2=1 (iii)

Put 1b2=u & 1a2=v.

9u+4v=1 (iv) and u+36v=1 (v)

Multiply (v) by 9 & subtract (iv) from it.

320v=8

v=8320

v=140

1a2=140

a2=40

Put v=140 in (v)

u+[36×140]=1

u=[1910]=110

1b2=110

b2=10

So, b2=10 and a2=40

So, the required equation is x210+y240=1.


Benefits of Class 11 Maths Chapter 10: Conic Sections - Important Questions

  • The important questions for Class 11 Maths Chapter 10: Conic Sections cover all the essential topics like circles, parabolas, ellipses, and hyperbolas. They focus on standard equations, properties, and problem-solving techniques, ensuring a complete understanding of the chapter.

  • These questions are curated based on the latest CBSE syllabus and past exam trends. They help students prepare for commonly asked questions, improving their chances of scoring high marks in the exams.

  • Practising important questions helps students learn how to approach different types of problems, including derivations, conceptual questions, and application-based problems, boosting their analytical and problem-solving skills.

  • The curated set of important questions eliminates the need for students to search through multiple resources. They focus on the most relevant problems, saving time and allowing targeted preparation.

  • By solving these questions, students gain insights into how conic sections like parabolas, ellipses, and hyperbolas are used in real-world scenarios, such as satellite paths, bridge designs, and optics.


Related Study Materials for Class 11 Maths Chapter 10 Conic Sections


CBSE Class 11 Maths Chapter-wise Important Questions

CBSE Class 11 Maths Chapter-wise Important Questions and Answers cover topics from all 14 chapters, helping students prepare thoroughly by focusing on key topics for easier revision.



Additional Study Materials for Class 11 Maths

WhatsApp Banner

FAQs on CBSE Class 11 Maths Important Questions - Chapter 10 Conic Sections

1. Why is it important to practice questions from CBSE Class 11 Maths Chapter 10 - Conic Sections?

Practising important questions from Chapter 10 - Conic Sections helps students understand the equations and properties of curves like circles, parabolas, ellipses, and hyperbolas. These concepts are essential for exams and real-world applications.

2. What are some real-life applications of conic sections?

Conic sections are used in:

  • Designing satellite dishes (parabolas).

  • Predicting planetary orbits (ellipses).

  • Navigation systems and radio wave propagation (hyperbolas).

  • Construction and architectural designs (circles and ellipses).

3. Are the questions in Chapter 10 - Conic Sections difficult?

The difficulty level varies. Some questions focus on direct formulas, while others involve derivations and real-life applications. With regular practise, students can handle all types of questions easily.

4. Do I need to memorise formulas for solving questions on conic sections?

Yes, memorising the standard equations and properties of conic sections (circle, parabola, ellipse, hyperbola) is essential. This ensures faster and accurate problem-solving in exams.

5. What types of questions are asked from Chapter 10 - Conic Sections in CBSE exams?

Questions include:

  • Deriving standard equations of conic sections.

  • Solving problems based on eccentricity and focus.

  • Finding distances from a point to a line or curve.

  • Application-based problems using real-world scenarios.

6. Where can I get free PDF downloads of important questions for Class 11 Maths Chapter 10 - Conic Sections?

Free PDFs of important questions can be downloaded from Vedantu. These PDFs can be accessed offline for easy practise.

7. How many types of conic sections are studied in Chapter 10?

The chapter covers:

  • Circle: Symmetrical curve with constant radius.

  • Parabola: Curve where every point is equidistant from a fixed point (focus) and a line (directrix).

  • Ellipse: Closed curve with two focal points.

  • Hyperbola: Open curve with two branches and two focal points.

8. Can solving important questions improve my performance in exams?

Absolutely! Practising important questions ensures:

  • Familiarity with exam patterns.

  • Understanding of frequently asked topics.

  • Improved problem-solving speed and accuracy.

9. What are some tips for solving questions from Chapter 10 - Conic Sections?

  • Understand the standard equations of all conic sections.

  • Memorise formulas for eccentricity, focal distances, and directrix.

  • Practice application-based problems for a deeper understanding.

  • Revise step-by-step solutions to learn the correct methods.

10. Are the concepts of Chapter 10 - Conic Sections useful for competitive exams?

Yes, conic sections are fundamental in competitive exams like JEE, NDA, and SAT. Mastering these concepts helps in solving advanced-level problems efficiently.

11. What is the significance of eccentricity in conic sections?

Eccentricity defines the shape of a conic section:

  • e=0: Circle.

  • 0<e<1: Ellipse.

  • e=1: Parabola.

  • e>1: Hyperbola.

12. How do important questions help in learning conic sections?

Important questions focus on:

  • Key concepts like eccentricity, focus, and directrix.

  • Application of standard equations.

  • Problem-solving techniques needed for exams.

13. Are diagrams necessary while solving questions from Chapter 10 - Conic Sections?

Yes, diagrams are crucial for understanding the geometry of conic sections. They help visualise the problem and solve it accurately.

14. How much time should I dedicate to practising questions on conic sections?

You should practise for at least 1-2 hours daily, focusing on solving a mix of formula-based, derivation, and application-oriented questions.

15. Can I score full marks in questions on conic sections?

Yes, with consistent practice and understanding of concepts, scoring full marks in questions from Chapter 10 - Conic Sections is achievable. Ensure you solve both NCERT problems and additional important questions for thorough preparation.