Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

CBSE Class 11 Maths Important Questions - Chapter 11 Introduction to Three Dimensional Geometry

ffImage
banner

Important Questions for CBSE Class 11 Maths Chapter 11 Introduction to Three Dimensional Geometry FREE PDF Download

Chapter 11 of CBSE Class 11 Maths Introduction to Three-Dimensional Geometry introduces students to the basics of geometry in three-dimensional space. It covers key concepts such as 3D coordinates, the distance between two points, section formulas, and the equations of a line. These topics help students visualise spatial relationships and solve problems involving geometric figures in a 3D plane.

toc-symbolTable of Content
toggle-arrow


To help students prepare effectively for exams, a collection of Important Questions for Chapter 11 are created by experts at Vedantu according to the latest Class 11 Maths Syllabus. These Important Questions for Class 11 Maths are prepared to cover key topics and types of problems that are frequently asked in exams.

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access Important Questions for Class 11 Mathematics Chapter 11 - Introduction to Three Dimensional Geometry

1 Marks Questions

1.Name the octant in which the following lie: $(5,2,3)$

Ans: Octant I


2. Name the octant in which the following lie: $( - 5,4,3)$

Ans: Octant II


3. Find the image of $( - 2,3,4)$ in the y $z$ plane

Ans: $(2,3,4)$


4. Find the image of $(5,2, - 7)$ in the x y plane.

Ans: $(5,2,7)$


5. A point lie on ${\mathbf{X}}$-axis what are co- ordinate of the point

Ans: $(a,0,0)$


6. Write the name of plane in which $x$ axis and $y$- axis are taken together.

Ans: X Y Plane


7. The point $(4, - 3, - 6)$ lie in which octants

Ans: VIII


8. The point $(2,0,8)$ lie in which plane

Ans: XZ Plane


9. A point is in the $XZ$ plane. What is the value of y co-ordinates?

Ans: $Zero$


10. What is the coordinates of $XY$ plane

Ans: $(x,y,0)$


11. The point $( - 4,2,5)$ lie in which octant.

Ans:  Octant II


12. The distance from origin to point $(a,b,c)$ is:

Ans: Distance from origin=$\sqrt {{a^2} + {b^2} + {c^2}} $


4 Marks Questions

1. Given that $P(3,2, - 4),Q(5,4, - 6)$ and $R(9,8, - 10)$ are collinear. Find the ratio in which $Q$ divides PR

Ans: Suppose Q divides PR in the ratio $\lambda :1.$ Then coordinator of ${\text{Q}}$ are

$\left( {\dfrac{{9\lambda  + 3}}{{\lambda  + 1}},\dfrac{{8\lambda  + 2}}{{\lambda  + 1}},\dfrac{{ - 10\lambda  - 4}}{{\lambda  + 1}}} \right)$

But, coordinates of ${\text{Q}}$ are $(5,4, - 6).$Therefore

$\dfrac{{9\lambda  + 3}}{{2 + 1}} = 5,\dfrac{{8\lambda  + 2}}{{\lambda  + 1}} = 4,\dfrac{{ - 10\lambda  - 4}}{{2 + 1}} = 6$

These three equations give

$\hat \alpha  = \dfrac{1}{2}$

So Q divides PR in the ratio $\dfrac{1}{2}:1$ or 1:2


2. Determine the points in x y plane which is equidistant from these point A $(2,0,3)$T${\text{B}}(0,3,2)$ and $C(0,0,1)$

Ans: Since the z coordinate in the xy plane is zero. So, let P(x, y, 0) be a point in xy- plane, such that PA=PB=PC. $Now,PA = PB$

PA2 = PB2

$ \Rightarrow {(x - 2)^2} + {(y - 0)^2} + {(0 - 3)^2} = {(x - 0)^2} + {(y - 3)^2} + {(0 - 2)^2}$

$2x - 3y = 0 \ldots ..(i)$

$PB = PC$

$ \Rightarrow P{B^2} = P{C^2}$

$ \Rightarrow {(x - 0)^2} + {(y - 3)^2} + {(0 - 2)^2} = {(x - 0)^2} + {(y - 0)^2} + {(0 - 1)^2}$T

$ \Rightarrow  - 6y + 12 = 0 \Rightarrow y = 2 \ldots  \ldots ..(ii)$

Put $y = 2$ in (i) we get $x = 3$

Hence the points required are $(3,2,0)$.


3. Find the locus of the point which is equidistant from the point ${\text{A}}(0,2,3)$ and ${\text{B}}(2, - 2,1)$

Ans: Let \[Q(x,y,z)\]be any point which is equidistant from $A(0,2,3)$ and $B(2, - 2,1).$ Then

\[QA = QB\]

Squaring both sides, we get

\[QA\]2 = \[QB\]2

$ \Rightarrow \sqrt {{{(x - 0)}^2} + {{(y - 2)}^2} + {{(2 - 3)}^2}}  = \sqrt {{{(x - 2)}^2} + {{(y + 2)}^2} + {{(z - 1)}^2}} $

$\Rightarrow 4x - 8y - 42 + 4 = 0$

$\Rightarrow x - 2y - 2 + 1 = 0$

$\Rightarrow x - 2y - 1 = 0$


4. Show that the points\[P(2, - 1,3),Q(0,1,2),R(2, - 1,3)\]  are vertices of an isosceles right angled triangle.

Ans: We have

$PQ = \sqrt {{{(2 - 0)}^2} + {{( - 1 - 1)}^2}{{( + 3 - 2)}^2}}  = \sqrt {4 + 4 + 1}  = 3$

$QR = \sqrt {{{(1 - 2)}^2} + {{( - 3 + 1)}^2} + {{(1 - 3)}^2}}  = \sqrt {1 + 4 + 4}  = 3$

And $RP = \sqrt {{{(1 - 0)}^2} + {{( - 3 - 1)}^2} + {{(1 - 2)}^2}}  = \sqrt {1 + 16 + 1}  = 3\sqrt 2 $

Clearly $PQ = QR$ and $PQ$2 + $QR$2 = $RP$2

Hence triangle $PQR$ is an isosceles right angled triangle.


5. Using the section formula, prove that the three points $A( - 2,3,5), B(1,2,3)$, and $C(7,0, - 1)$ are collinear.

Ans: Assume that the given points are collinear and $C$ divides $AB$ in the ratio $\lambda  = 1.$

Then coordinates of $C$ are

$\left( {\dfrac{{\lambda  - 2}}{{2 + 1}},\dfrac{{2\lambda  + 3}}{{\lambda  + 1}},\dfrac{{3\hat 2 + 5}}{{\lambda  + 1}}} \right)$

But the coordinates of $C$ are $(3,0, - 1)$ from the above equations we get $\lambda  = \dfrac{3}{2}$

Since these equation give the same value of ${V_.}$

∴  the given points are collinear and$C$ divides $AB$ exactly in the ratio 3: 2.


6. Show that coordinator of the centroid of triangle with vertices $A\left( {{x_1}{y_1}{z_1}} \right),{\text{B}}\left( {{x_2}{y_2}{z_2}} \right)$,T$\operatorname{and} C\left( {{x_3}{y_3}{z_3}} \right)$ is $\left[ {\dfrac{{{x_1} + {y_1} + {z_1}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3},\dfrac{{{z_1} + {z_2} + {z_3}}}{3}} \right]$

Ans: Let $D$ be the mid-point of $BC$ ,then


coordinator of the centroid of triangle with vertices $A\left( {{x_1}{y_1}{z_1}} \right),{\text{B}}\left( {{x_2}{y_2}{z_2}} \right)$,T$\operatorname{and} C\left( {{x_3}{y_3}{z_3}} \right)$ is $\left[ {\dfrac{{{x_1} + {y_1} + {z_1}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3},\dfrac{{{z_1} + {z_2} + {z_3}}}{3}} \right]$


Coordinates of ${\text{D}}$are $\left( {\dfrac{{{x_2} + {x_2}}}{2},\dfrac{{{y_2} + {y_3}}}{2},\dfrac{{{z_2} + {z_3}}}{2}} \right)$

Let${\text{G}}$ be the centroid of $\vartriangle ABC$. The ${\text{G}}$, divides${\text{AD}}$ in the ratio 2:  1. So coordinates of ${\text{D}}$are

$\left( {\dfrac{{1.{x_1} + 2\dfrac{{\left( {{x_2} + {x_3}} \right)}}{2}}}{{1 + 2}} \cdot \dfrac{{{{1.2}_1} + 2\left( {\dfrac{{{y_2} + {y_3}}}{2}} \right)}}{{1 + 2}} = \dfrac{{1 - {z_1} + 2\left( {\dfrac{{{z_2} + {z_3}}}{2}} \right)}}{{1 + 2}}} \right)$

$\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3},\dfrac{{{z_1} + {z_2} + {z_3}}}{3}} \right)$

7. Prove by distance formula that the points $X(1,2,3),Y( - 1, - 1, - 1),Z(3,5,7)$ are collinear.

Ans: The Distance

$|XY| = \sqrt {{{( - 1 - 1)}^2} + {{( - 1 - 2)}^2} + {{( - 1 - 3)}^2}}  = \sqrt {4 + 9 + 16}  = \sqrt {29} $

Distance

$|YZ| = \sqrt {{{(3 + 1)}^2} + {{(5 + 1)}^2} + {{(7 + 1)}^2}}  = \sqrt {16 + 36 + 64}  = 2\sqrt {29} $

Distance

$|XZ| = \sqrt {{{(3 - 1)}^2} + {{(5 - 2)}^2} + {{(7 - 3)}^2}}  = \sqrt {4 + 9 + 16}  = \sqrt {29} $

$\therefore |YZ| = |XY| + |XZ|$

The points $X,Y,Z$ are collinear.


8. find the co-ordinate of the point which divides the join of $A(2, - 1,4),B(4,3,2)$ in the ratio $2:5(i)$ internally (ii) externally

Ans: Let $C(x,y,z)$ be the required point

i. For internal division

$x = \dfrac{{2 \times 4 + 5 \times 2}}{{2 + 5}} = \dfrac{{8 + 10}}{7} = \dfrac{{18}}{7}$

$y = \dfrac{{2 \times 3 + 5 \times  - 1}}{{2 + 5}} = \dfrac{{6 - 5}}{7} = \dfrac{1}{7}$

$z = \dfrac{{2 \times 2 + 5 \times 4}}{{2 + 5}} = \dfrac{{4 + 20}}{7} = \dfrac{{24}}{7}$

$\therefore $Required point$C\left( {\dfrac{{18}}{7},\dfrac{1}{7},\dfrac{{24}}{7}} \right)$

ii. For external division.

$x = \dfrac{{2 \times 4 - 5 \times 2}}{{2 - 5}} = \dfrac{{8 - 10}}{{ - 3}} = \dfrac{{ - 2}}{{ - 3}} = \dfrac{2}{3}$

$y = \dfrac{{2 \times 3 - 5 \times  - 1}}{{2 - 5}} = \dfrac{{6 + 5}}{{ - 3}} = \dfrac{{11}}{{ - 3}}$

$z = \dfrac{{2 \times 2 - 5 \times 4}}{{2 - 5}} = \dfrac{{4 - 20}}{{ - 3}} = \dfrac{{ - 16}}{{ - 3}} = \dfrac{{16}}{3}$

$\therefore $Required point $C\left( {\dfrac{2}{3},\dfrac{{ - 11}}{3},\dfrac{{16}}{3}} \right)$


9. Find the co-ordinate of a point equidistant from the four points

$P(0,0,0),Q(a,0,0),R(0,b,0)$ and $S(0,0,c)$.

Ans: let $A(x,y,z)$ be the required point

According to condition

$PA = AQ = AR = AS$

Now $PA = AQ$

$ \Rightarrow P{A^2} = A{Q^2}$

$ \Rightarrow {x^2} + {y^2} + {z^2} = {(x - a)^2} + {(y - 0)^2} + {(z - 0)^2}$

$ \Rightarrow {x^2} + {y^2} + {z^2} = {x^2} - 2ax + {a^2} + {y^2} + {z^2}$

$2ax = {a^2}$

$\therefore x = \dfrac{a}{2}$

Similarly $PA = AR$

$ \Rightarrow y = \dfrac{b}{2}$

$Q\left( {x,y,{z_,}} \right)\quad ,R\left( {{x_2},{y_2},{z_2}} \right)$ and $S\left( {{x_3},{y_3},{z_3}} \right)D,E$ and $F$ are mid points of side $RS,SQ$ and $QR$ respectively.

Then $\dfrac{{{x_1} + {x_2}}}{2} =  - 1$

${x_1} + {x_2} =  - 2 \ldots ..(1)$

$\dfrac{{{y_1} + {y_2}}}{2} = 1$

${y_1} + {y_2} = 2 \ldots  \ldots $(2)

$\dfrac{{{z_1} + {z_2}}}{2} =  - 4$

${z_1} + {z_2} =  - 8 \ldots  \ldots (3)$

$\dfrac{{{x_2} + {x_3}}}{2} = 1$

${x_2} + {x_3} = 2 \ldots  \ldots (4)$

$\dfrac{{{y_2} + {y_3}}}{2} = 2$

$y2 + y3 = 4 \ldots ..(5)$

$\dfrac{{{z_2} + {z_3}}}{2} =  - 3$

${z_2} + {z_3} =  - 6 \ldots  \ldots $(6)

$\dfrac{{{x_1} + {r_3}}}{2} = 3$

${x_1} + {x_3} = 6 \ldots  \ldots (7)$

$\dfrac{{{y_1} + {y_3}}}{2} = 0$

${y_1} + {y_3} = 0 \ldots  \ldots (8)$

$\dfrac{{{z_1} + {z_3}}}{2} = 1$

${z_1} + {z_3} = 2 \ldots  \ldots (9)$

Adding equation (1), (4) and (7) we get

$2\left( {{y_1} + {y_2} + {y_3}} \right) = 6$

${y_1} + {y_2} + {y_3} = 3 \ldots  \ldots (11)$

And $PA = AS$

$ \Rightarrow z = \dfrac{c}{2}$

Hence co-ordinate of $A(\dfrac{a}{2},\dfrac{b}{2},\dfrac{c}{2})$


10. Find the ratio in which the join the $B(2,1,5)$ and $C(3,4,3)$ is divided by the plane$2x + 2y - 2z = 1$. Also find the co-ordinate of the point of division.

Ans: Assume the plane$2x + 2y - 2z = 1$ divides $A(2,1,5)$ and $B(3,4,5)$ in the ratio $\lambda :1$ at point $A$

Then the co-ordinate of the point $A$

$\left( {\dfrac{{3\lambda  + 2}}{{\lambda  + 1}} \cdot \dfrac{{4\lambda  + 1}}{{\lambda  + 1}}\dfrac{{3\lambda  + 5}}{{\lambda  + 1}}} \right)$

$\because $ Point $A$ lies on the plane $2x + 2y - 2z = 1$

$\therefore $ Points $A$ must satisfy the equation of plane

$2\left( {\dfrac{{3\lambda  + 2}}{{\lambda  + 1}}} \right) + 2\left( {\dfrac{{4\lambda  + 1}}{{\lambda  + 1}}} \right) - 2\left( {\dfrac{{3\lambda  + 5}}{{\lambda  + 1}}} \right) = 1$

$ \Rightarrow 8\lambda  - 4 = \lambda  + 1$

$ \Rightarrow \lambda  = \dfrac{5}{7}$

$\therefore $ Required ratio 5:7


11. Find the centroid of a triangle, mid-points of whose sides are $D(1,2, - 3),E(3,0,1)$and$F( - 1,1, - 4)$.

Ans: Suppose the co-ordinate of vertices of $\vartriangle ABC$ are

Add equation (3), (6) and (9)

$2\left( {{z_1} + {z_2} + {z_3}} \right) =  - 8 - 6 + 2$

${z_1} + {z_2} + {z_3} =  - 6 \ldots  \ldots (12)$

Co-ordinate of centroid


the centroid of a triangle, mid-points of whose sides are $D(1,2, - 3),E(3,0,1)$and$F( - 1,1, - 4)$.


$x = \dfrac{{{x_1} + {x_2} + {x_3}}}{3} = \dfrac{3}{3} = 1$

$y = \dfrac{{{y_1} + {y_2} + {y_3}}}{3} = \dfrac{3}{3} = 1$

$z = \dfrac{{{z_1} + {z_2} + {z_3}}}{3} = \dfrac{{ - 6}}{3} =  - 2$

$(1,1, - 2)$


12. The mid points of the sides of $\vartriangle ABC$ are given by $( - 2,3,5),(4, - 1,7)$ and $(6,5,3)$ find the co-ordinate of ${\text{A}},{\text{B}}$ and${\text{C}}$.

Ans: Let us suppose that the co-ordinates of point $A,B$ AND $C$ are $\left( {{x_1},{y_1},{z_1}} \right),\left( {{x_2},{y_2},{z_2}} \right)$and $\left( {{x_3},{y_3},{z_3}} \right)$ respectively. Let $D,E$ and$F$are the mid-points of side $BC,CA$and $AB$respectively.


The mid points of the sides of $\vartriangle ABC$ are given by $( - 2,3,5),(4, - 1,7)$ and $(6,5,3)$ find the co-ordinate of ${\text{A}},{\text{B}}$ and${\text{C}}$.


$x$1 + $x$2 =12T………(1)

$\dfrac{{{y_1} + {y_2}}}{2} = 5$

${y_1} + {y_2} = 10 \ldots  \ldots (2)$

$\dfrac{{{z_1} + {z_2}}}{2} = 3$

${z_1} + {z_2} = 6 \ldots  \ldots $(3)

$\dfrac{{{x_2} + {x_3}}}{2} =  - 2$

${x_2} + {x_3} =  - 4 \ldots  \ldots (4)$

$\dfrac{{{y_2} + {y_3}}}{2} = 3$

${y_2} + {y_3} = 6 \ldots  \ldots (5)$

$\dfrac{{{z_1} + {z_2}}}{2} = $

${z_1} + {z_2} = 10 \ldots  \ldots (6)$

$\dfrac{{{x_1} + {x_3}}}{2} = 4$

${x_1} + {x_3} = 8 \ldots  \ldots (7)$

$\dfrac{{{y_1} + {y_3}}}{2} =  - 1$

${y_1} + {y_3} =  - 2 \ldots  \ldots $(8)

$\dfrac{{{z_1} + {z_3}}}{z} = 7$

${z_1} + {z_3} = 14 \ldots  \ldots $(9)

Add equation (1), (4) and (7)

$2\left( {{x_1} + {x_2} + {x_3}} \right) = 12 - 4 + 8$

${x_1} + {x_2} + {x_3} = \dfrac{{16}}{3} = 8 \ldots ..(10)$

Similarly,${y_1} + {y_2} + {y_3} = 7 \ldots  \ldots (11)$

${z_1} + {z_2} + {z_3} = 15 \ldots  \ldots (12)$

Subtract equation (1), (4) and (7) from (10)

${x_3} =  - 4,\quad {x_1} = 12,\quad {x_2} = 0$

Now subtract equation (2), (5) and (8) from (11)

${y_3} =  - 3,\quad {y_1} = 1,\quad {y_2} = 9$

Similarly,${z_3} = 9,\quad {z_1} = 5,\quad {z_2} = 1$

$\therefore $ co-ordinate of point $A,B$and $C$are

$A(12,0, - 4),B(1,9, - 3)$ ,and$C(5,1,9)$


13. Find the co-ordinates of the points which trisects the line segment $QP$ formed by joining the point $P(4,2, - 6)$ and $Q(10, - 16,6)$.

Ans: Let $R\& S$ be the points of trisection of the line  segment $QP$ . Then


the co-ordinates of the points which trisects the line segment $QP$ formed by joining the point $P(4,2, - 6)$ and $Q(10, - 16,6)$.


$ \Rightarrow 2PR = RQ$

$ \Rightarrow \dfrac{{PQ}}{{RQ}} = \dfrac{1}{2}$

$S$divide $QP$in the ratio 1: 2

$\therefore $ Co-ordinates of point

$S\left[ {\dfrac{{1(10) + 2 \times 4}}{{1 + 2}},\dfrac{{1( - 16) + 2 \times 2}}{{1 + 2}},\dfrac{{1 \times 6 + 2( - 6)}}{{1 + 2}}} \right]$

$S(6, - 4, - 2)$

Similarly,$PS = 2SQ$

$ \Rightarrow \dfrac{{PS}}{{SQ}} = \dfrac{2}{1}$

$\therefore $$R$ divide the line segment $QP$ in the ratio 2:1

$\therefore $ co-ordinates of point $R$

$R\left[ {\dfrac{{2(10) + 1(4)}}{{1 + 2}},\dfrac{{2( - 16) + 1(2)}}{{1 + 2}},\dfrac{{2(6) + 1( - 6)}}{{1 + 2}}} \right]$

$\therefore R(8, - 10,2)$


14. Show that the point $A(1,2,3),B( - 1, - 2, - 1),C(2,3,2)$ and $D(4,7,6)$ taken in order form the vertices of a parallelogram. Do these form a rectangle?

Ans: Mid-point of $AC$ is $\left( {\dfrac{{1 + 2}}{2},\dfrac{{2 + 3}}{2},\dfrac{{3 + 2}}{2}} \right)$

i.e. $\left( {\dfrac{3}{2},\dfrac{5}{2},\dfrac{5}{2}} \right)$

also the mid-point of $BD$ is $\left( {\dfrac{{ - 1 + 4}}{2},\dfrac{{ - 2 + 7}}{2},\dfrac{{ - 1 + 6}}{2}} \right)$

i.e.$\left( {\dfrac{3}{2},\dfrac{5}{2},\dfrac{5}{2}} \right)$

Then$AC$and  $BD$ have same mid-points

$\therefore $$AC$ and $BD$ bisect each other , It is a Parallelogram.

Now 

$AC = \sqrt {{{(2 - 1)}^2} + {{(3 - 2)}^2} + {{(2 - 3)}^2}}  = \sqrt 3 $ and

$BD = \sqrt {{{(4 + 1)}^2} + {{(7 + 2)}^2} + {{(6 + 1)}^2}}  = \sqrt {155} $

$\therefore AC \ne BD$ diagonals are not equal

PQRS is not a rectangle.


15. A point $C$with $x$ co-ordinates 4 lies on the line segment joining the points$A(2, - 3,4)$ and $B(8,0,10)$ find the co-ordinates of the point $C$.

Ans: let the point $C$ divide the line segment joining the point $A$ and $B$in the ratio $\lambda  = 1$, Then co-ordinates of Point ${\text{R}}$

$\left[ {\dfrac{{8\lambda  + 2}}{{\lambda  + 1}},\dfrac{{ - 3}}{{\lambda  + 1}},\dfrac{{10\lambda  + 4}}{{\lambda  + 1}}} \right]$

The $x$ co-ordinates of point $C$is 4

$ \Rightarrow \dfrac{{8\lambda  + 2}}{{\lambda  + 1}} = 4 = \lambda  = \dfrac{1}{2}$

$\therefore $ co-ordinates of point ${\text{R}}$

$\left[ {4,\dfrac{{ - 3}}{{\dfrac{1}{2} + 1}} \cdot \dfrac{{10 \times \dfrac{1}{2} + 4}}{{\dfrac{1}{2} + 1}}} \right]$ i.e. $(4, - 2,6)$

16. If the points $A(1,0, - 6) = B( - 3,P,q)$ and $C( - 5,9,6)$are collinear, find the values of ${\mathbf{P}}$and ${\mathbf{q}}$

Ans: Given points 

$A(1,0, - 6) = B( - 3,P,q)$ and $C( - 5,9,6)$ are collinear

Let point $B$ divide $AC$ in the ratio K:1

$\therefore $  co-ordinates of point $A\left( {\dfrac{{1 - 5K}}{{K + 1}} \cdot \dfrac{{0 + 9K}}{{K + 1}},\dfrac{{ - 6 + 6K}}{{K + 1}}} \right)$

$B( - 3,P,q)$

$\dfrac{{1 - 5K}}{{K + 1}} =  - 3$

$1 - 5K =  - 3K - 3$

$ - 2K =  - 4$

$K = \dfrac{{ - 4}}{{ - 2}}$

$K = 2$

$\therefore $ The value of ${\text{P}}$ and ${\text{q}}$ are 6 and 2.


17. Three consecutive vertices of a parallelogram $PQRS$ are $P(3, - 1,2),Q(1,2, - 4)$ and $R( - 1,1,2)$. Find fourth vertex $S$.

Ans: Given vertices of $Paralle\log ramPQRS$

$P(3, - 1,2),Q(1,2, - 4),R( - 1,1,2)$

Suppose co-ordinates of fourth vertex $S(x,y,z)$

Mid-point of $PR\left( {\dfrac{{3 - 1}}{2},\dfrac{{ - 1 + 1}}{2},\dfrac{{2 + 2}}{2}} \right)$

$ = (1,0,2)$

Mid-point of $QS\left( {\dfrac{{x + 1}}{2},\dfrac{{y + 2}}{2},\dfrac{{ - 4 + z}}{2}} \right)$

Mid-point of $PR$ = mid-point of $QS$

$\dfrac{{x + 1}}{2} = 1 \Rightarrow x = 1$

$\dfrac{{y + 2}}{2} = 0 \Rightarrow y =  - 2$

$\dfrac{{ - 4 + z}}{2} = 2 \Rightarrow z = 8$

Co-ordinates of point $S(1, - 2,8)$.


18. If $P$ and $Q$be the points $(3.4,5)$ and $( - 1,3,7)$ respectively. Find the eq. of the set points $A$ such that $A{P^2} + A{Q^2} = {K^2}$ where ${\mathbf{K}}$ is a constant.

Ans: Let co-ordinates of point P be$(x,y,z)$

$A{P^2} = {(x - 3)^2} + {(y - 4)^2} + {(z - 5)^2}$

$ = {x^2} - 6x + 9 + {y^2} - 8y + 16 + {z^2} - 10z + 25$

$ = {x^2} + {y^2} + {z^2} - 6x - 8y - 10z + 50$

$A{Q^2} = {(x + 1)^2} + {(y - 3)^2} + {(z - 7)^2}$

$ = {x^2} + 2x + 1 + {y^2} - 6y + 9 + {z^2} - 14 + 49$

$ = {x^2} + {y^2} + {z^2} + 2x - 6y - 14z + 59$

$A{P^2} + A{Q^2} = {K^2}$

$2\left( {{x^2} + {y^2} + {z^2}} \right) - 4x - 14y - 24z + 109 = {K^2}$

${x^2} + {y^2} + {z^2} - 2x - 7y - 12z = \dfrac{{{K^2} - 109}}{2}$


6 Marks Questions

1. Prove that the lines joining the vertices of a tetrahedron to the centroids of the opposite faces are concurrent.

Ans: Let $PQRS$ be tetrahedron such that the coordinates of its vertices are $P\left( {{x_1},{y_1},{z_1}} \right)$, $Q\left( {{x_2},{y_2},{z_2}} \right),R\left( {{x_2},{y_3},{z_3}} \right)$ and $S({x_4},{y_4},{z_4})$.

The coordinates of the centroids of faces $PQR,SPQ,SQR$ and $SRP$respectively.

${G_1}\left[ {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3},\dfrac{{{z_1} + {z_2} + {z_3}}}{3}} \right]$

${G_2}\left[ {\dfrac{{{x_1} + {x_2} + {x_4}}}{3},\dfrac{{{y_1} + {y_2} + {y_4}}}{3} \cdot \dfrac{{{z_1} + {z_2} + {z_4}}}{3}} \right]$

${G_3}\left[ {\dfrac{{{x_2} + {x_3} + {x_4}}}{3},\dfrac{{{y_2} + {y_3} + {y_4}}}{3},\dfrac{{{z_2} + {z_3} + {z_4}}}{3}} \right]$

${G_4}\left[ {\dfrac{{{x_4} + {x_3} + {x_1}}}{3},\dfrac{{{y_4} + {y_3} + {y_1}}}{3} \cdot \dfrac{{{z_4} + {z_3} + {z_1}}}{3}} \right]$

Now, coordinates of point $G$ dividing $S{G_1}$ in the ratio 3: 1are


the lines joining the vertices of a tetrahedron to the centroids of the opposite faces are concurrent.


$\left[ {\dfrac{{1.{x_4} + 3\left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3}} \right)}}{{1 + 3}} = \dfrac{{1.{y_4} + 3\left( {\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right)}}{{1 + 3}} = \dfrac{{1 - {z_4} + 3\left( {\dfrac{{{z_1} + {z_2} + {z_3}}}{3}} \right)}}{{1 + 3}}} \right]$

$ = \left[ {\dfrac{{{x_1} + {x_2} + {x_3} + {x_4}}}{4},\dfrac{{{y_1} + {y_2} + {y_3} + {y_4}}}{4},\dfrac{{{z_1} + {z_2} + {z_3} + {z_4}}}{4}} \right]$

Similarly the point dividing $R{G_2},P{G_3},Q{G_4}$ and $S{G_1}$ in the ratio 3:1 has the same coordinates.

Hence the point $G\left[ {\dfrac{{{x_1} + {x_2} + {x_3} + {x_4}}}{4},\dfrac{{{y_1} + {y_2} + {y_3} + {y_4}}}{4},\dfrac{{{z_1} + {z_2} + {z_3} + {z_4}}}{4}} \right]$ is common to

$S{G_1}$, $R{G_2},P{G_3}$ and $Q{G_4}$

Hence, they are concurrent.


2. The midpoints of the sides of a triangle are $(1,5, - 1),(0,4, - 2)$ and $(2,3,4)$. Find its vertices.


seo images


Ans: Let the vertices of triangle be

$A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right)$

Mid-point of $A C$ is $E$

$\therefore \quad\left(\dfrac{x_{1}+x_{3}}{2}, \dfrac{y_{1}+y_{3}}{2}, \dfrac{z_{1}+z_{3}}{2}\right) \equiv(0,4,-2)$

So, $C\left(x_{3}, y_{3}, z_{3}\right) \equiv C\left(-x_{1}, 8-y_{1},-4-z_{1}\right)$

(i)

Mid-point of $A B$ is $F$

$\therefore \quad\left(\dfrac{x_{1}+x_{2}}{2}, \dfrac{y_{1}+y_{2}}{2}, \dfrac{z_{1}+z_{2}}{2}\right) \equiv(2,3,4)$

So, $B\left(x_{2}, y_{2}, z_{2}\right) \equiv B\left(4-x_{1}, 6-y_{1}, 8-z_{1}\right)$

(ii) Mid-point of BC is

 $\therefore \quad \dfrac{-x_{1}+4-x_{1}}{2} =1,$$\dfrac{8-y_{1}+6-y_{1}}{2}=5$

 $\dfrac{-4-z_{1}+8-z_{1}}{2}=-1$

 $\Rightarrow \quad x_{1}=1, y_{1}=2 \text { and } z_{1}=3$

 $\therefore \quad A \equiv(1,2,3)$

 So, $B \equiv(3,4,5) \quad$ [Using (ii)]

 and $C \equiv(-1,6,-7) \quad$ [Using (i)]

 Centroid, $G \equiv\left(\dfrac{1+3-1}{3}, \dfrac{2+4+6}{3}, \dfrac{3+5-7}{3}\right)$

 $\equiv\left(1,4, \dfrac{1}{3}\right)$


3. Let $P\left( {{x_1} \cdot {y_1},{z_1}} \right)$ and $Q\left( {{x_2} \cdot {y_2},{z_2}} \right)$ be two points in space find co- ordinate of point $R$which divides$P$and $Q$ in the ratio ${m_1}:{m_2}$ by geometrically.

Ans: Let co-ordinate of Point $R$ be $(x,y,z)$ which divide line segment joining the point  $P$and $Q$ in the ratio ${m_1}:{m_2}$


seo images


Clearly , $\vartriangle PR{L^\prime }~\Delta QR{M^\prime }\quad [By - AA$similarity]

$\therefore \dfrac{{P{L^\prime}}}{{M{Q^\prime }}} = \dfrac{{PR}}{{RQ}}$

$ \Rightarrow \dfrac{{L{L^\prime } - LP}}{{MQ - M{M^\prime }}} = \dfrac{{{m_1}}}{{{m_2}}}$

$ \Rightarrow \dfrac{{NR - LP}}{{MQ - NR}} = \dfrac{{{m_1}}}{{{m_2}}}$

${\because L{L^\prime } = NR}$

${{\text{ and }}M{M^\prime } = NR}$

$ \Rightarrow \dfrac{{z - {z_1}}}{{{z_2} - z}} = \dfrac{{{m_1}}}{{{m_2}}}$

$ \Rightarrow z = \dfrac{{{m_1}{z_2} + {m_2}{z_1}}}{{{m_1} + {m_2}}}$

Similarly , we get

$y = \dfrac{{{m_1}{y_2} + {m_2}{y_1}}}{{{m_1} + {m_2}}}$


4. Show that the plane $px + qy + rz + s = 0$ divides the line joining the points $\left( {{x_1},{y_1},{z_1}} \right)$and $\left( {{x_2},{y_2},{z_2}} \right)$ in the ratio $\dfrac{{p{x_1} + q{y_1} + r{z_1} + s}}{{p{x_2} + q{y_2} + r{z_2} + s}}$.

Ans: Let the plane $px + qy + rz + s = 0$ divide the line joining the points $\left( {{x_1},{y_1},{z_1}} \right)$ and$\left( {{x_2},{y_2},{z_2}} \right)$ in the ratio $\lambda  = 1$.

$\therefore x = \dfrac{{\widehat {2{x_2}} + {x_1}}}{{\lambda  + 1}} = y = \dfrac{{\lambda {y_2} + {y_1}}}{{\lambda  + 1}} = z = \dfrac{{\lambda {z_2} + {z_1}}}{{\lambda  + 1}}$

$\because $ Plane $px + qy + rz + s = 0$Passing through $\left( {{x_0}y,z} \right)$

$\therefore p\dfrac{{\left( {\lambda {x_2} + {x_1}} \right)}}{{\lambda  + 1}} + q\dfrac{{\left( {\lambda {y_2} + {y_1}} \right)}}{{\lambda  + 1}} + r\dfrac{{\left( {\lambda {z_2} + {z_1}} \right)}}{{2 + 1}} + s = 0$

$p\left( {\lambda {x_2} + {x_1}} \right) + q\left( {\lambda {y_2} + {y_1}} \right) + r\left( {\lambda {z_2} + {z_1}} \right) + s(\lambda  + 1) = 0$

$\lambda \left( {p{x_2} + q{y_2} + r{z_2} + s} \right) + \left( {p{x_1} + q{y_1} + r{z_1} + s} \right) = 0$

$\lambda  =  - \dfrac{{\left( {p{x_1} + q{y_1} + r{z_1} + s} \right)}}{{\left( {p{x_2} + q{y_2} + r{z_2} + s} \right)}}$

Hence Proved.


5.Prove that the points$0(0,0,0),P(2,0,0),Q(1,\sqrt 3 ,0)$, and $R\left( {1,\dfrac{1}{{\sqrt 3 }},\dfrac{{2\sqrt 2 }}{{\sqrt 3 }}} \right)$ are

The vertices of a regular tetrahedron.

Ans: To prove $O,P,Q,R$ are vertices of regular tetrahedron.

${{\text{ We have to show that }}}$

${|OP| = |OQ| = |OR| = |PQ| = |QR| = |RP|}$

${|OP| = \sqrt {{{(0 - 2)}^2} + {0^2} + {0^2}}  = 2{\text{ unit }}}$

${|{\text{OQ}}| = \sqrt {{{(0 - 1)}^2} + {{(0 - \sqrt 3 )}^2} + {0^2}}  = \sqrt {1 + 3}  = \sqrt 4  = 2{\text{ unit }}}$

${|OR| = \sqrt {{{(0 - 1)}^2} + \left( {0 - \dfrac{1}{{\sqrt 3 }}} \right) + {{\left( {0 - \dfrac{{2\sqrt 2 }}{3}} \right)}^2}} }$ 

${ = \sqrt {1 + \dfrac{1}{3} + \dfrac{8}{3}} }$

${ = \sqrt {\dfrac{{12}}{3}}  = \sqrt 4  = 2{\text{ unit }}}$

${|AB| = \sqrt {{{(2 - 1)}^2} + {{(0 - \sqrt 3 )}^2} + {{(10 - 0)}^2}}  = \sqrt {1 + 3 + 0} }$ 

${ = \sqrt 4  = 2{\text{ unit }}}$ 

${|BC| = \sqrt {{{(1 - 1)}^2} + {{\left( {\sqrt 3  - \dfrac{1}{{\sqrt 3 }}} \right)}^2} + {{\left( {0 - \dfrac{{2\sqrt 2 }}{{\sqrt 3 }}} \right)}^2}} }$

${ = \sqrt {0 + {{\left( {\dfrac{2}{{\sqrt 3 }}} \right)}^2} + \dfrac{8}{3}} }$ 

$ = \sqrt {\dfrac{{12}}{3}}  = 2{\text{unit}}$

$|{\text{CA}}| = \sqrt {{{(1 - 2)}^2} + {{\left( {\dfrac{1}{{\sqrt 3 }} - 0} \right)}^2} + {{\left( {\dfrac{{2\sqrt 2 }}{{\sqrt 3 }} - 0} \right)}^2}} $

$ = \sqrt {1 + \dfrac{1}{3} + \dfrac{8}{3}} $

$ = \sqrt {\dfrac{{12}}{3}}  = 2{\text{unit}}$

$\therefore |{\text{AB}}| = |{\text{BC}}| = |{\text{CA}}| = |{\text{OA}}| = |{\text{OB}}| = |{\text{OC}}| = 2$ unit

${\text{O,P,Q,R}}$ are vertices of a regular tetrahedron.


6. If ${\text{P}}$ and  ${\text{Q}}$ are the points $( - 2,2,3)$ and $( - 1,4, - 3)$ respectively, then find the locus of

${\text{A}}$ such that $3|AP| = 2|\;AQ|$.

Ans: The Given points $P( - 2,2,3)$ and $Q( - 1,4, - 3)$

Suppose co-ordinates of point $A(x,y,z)$

$|AP| = \sqrt {{{(x + 2)}^2} + {{(y - 2)}^2} + {{(2 - 3)}^2}} $

$|{\text{AP}}| = \sqrt {{x^2} + {y^2} + {z^2} + 4x - 4y - 6z + 17} $

$|AQ| = \sqrt {{{(x + 1)}^2} + {{(y - 4)}^2} + {{(z + 3)}^2}} $

$|AQ| = \sqrt {{x^2} + {y^2} + {z^2} + 2x - 8y + 6z + 26} $

$9A{P^2} = 4\;A{Q^2}$

$9\left( {{x^2} + {y^2} + {z^2} + 4x - 4y - 6z + 17} \right) = 4\left( {{x^2} + {y^2} + {z^2} + 2x - 8y + 6z + 26} \right)$

\[\left( {5{x^2} + 5{y^2} + 5{z^2} + 28x - 4y - 30z + 49 = 0} \right)\]


Benefits of Class 11 Maths Chapter 11 Introduction to Three Dimensional Geometry - Important Questions

  • Helps in understanding the basics of 3D geometry, like coordinates, distance, and section formulas.

  • Builds a foundation for advanced topics in higher classes and competitive exams.

  • Improves problem-solving and analytical thinking skills.

  • Provides practice with a variety of questions to prepare effectively for exams.

  • Helps students get familiar with the type of questions asked in CBSE exams.

  • Step-by-step solutions make it easier to understand and clear doubts.

  • Saves time by focusing on the most important and frequently asked questions.

  • Boosts confidence in understanding 3D geometry problems.


Important Study Materials for Class 11 Maths Chapter 11 Introduction to Three Dimensional Geometry


CBSE Class 11 Maths Chapter-wise Important Questions

CBSE Class 11 Maths Chapter-wise Important Questions and Answers cover topics from all 14 chapters, helping students prepare thoroughly by focusing on key topics for easier revision.


Additional Study Materials for Class 11 Maths

WhatsApp Banner

FAQs on CBSE Class 11 Maths Important Questions - Chapter 11 Introduction to Three Dimensional Geometry

1. Why should I practise important questions for Chapter 11 - Introduction to Three Dimensional Geometry?

Practising these questions helps focus on key concepts, improves problem-solving skills, and prepares you effectively for CBSE exams.

2. Do the important questions cover all topics from Chapter 11 Introduction to 3 Dimensional Geometry?

Yes, they cover all major topics such as 3D coordinates, distance between points, section formulas, and equations of a line in space.

3. Are these  Important Questions for CBSE Class 11 Maths Chapter 11 similar to those asked in previous CBSE exams?

Yes, they are designed based on the CBSE exam pattern and include questions similar to those frequently asked in exams.

4. Will these questions help me score full marks in Chapter 11 Introduction to 3 Dimensional Geometry?

Solving these questions thoroughly will give you a strong grasp of the chapter, increasing your chances of scoring well in this section.

5. Do I need to solve NCERT questions along with Important Questions for CBSE Class 11 Maths Chapter 11?

Yes, solving NCERT questions along with these important questions will ensure comprehensive preparation.

6. Are the Important Questions for CBSE Class 11 Maths Chapter 11 suitable for students of all difficulty levels?

Yes, the questions range from basic to advanced difficulty, catering to students with varying levels of understanding.

7. Can I use these Important Questions for CBSE Class 11 Maths Chapter 11 for quick revision before exams?

Absolutely, these questions are perfect for quick revision as they focus on essential topics and commonly tested problems.

8. Do the solutions explain the steps in detail for Introduction to 3 Dimensional Geometry?

Yes, all solutions are provided with clear, step-by-step explanations to make learning easier.

9. Can I use these Important Questions for CBSE Class 11 Maths Chapter 11 for competitive exam preparation?

Yes, the concepts in these questions are also relevant for competitive exams like JEE, making them a valuable resource.

10. Where can I find the Important Questions for CBSE Class 11 Maths Chapter 11 - Introduction to Three Dimensional Geometry?

You can easily download the important questions as a FREE PDF from Vedantu Official Website.