Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Important Questions for CBSE Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations

ffImage
banner

Download Free PDF of CBSE Class 11 Maths Chapter-4 Important Questions

Important Questions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations are provided here as per the new syllabus prescribed by the CBSE. The important questions are very helpful for students in their preparation for examinations. Students should go through these important questions of Chapter 4- Complex Numbers and Quadratic Equations with solutions to score better in the exam.

In the Chapter Relations and Functions, important concepts of mathematics are discussed. The solutions are prepared by our subject matter experts in easy language so that students can grab the complex concepts of mathematics easily through solutions.


Topics Covered in the Chapter Complex Numbers and Quadratic Equations

We provide important questions for class 11 Chapter 4 of Mathematics: Complex Numbers in this article. Before jumping to the important questions, let us first understand the topics covered in this chapter.

  • The real number and an imaginary number

  • Complex number definition

  • Integral powers of iota

  • Purely real and purely imaginary complex numbers.

  • Complex number equality

  • Algebra in complex numbers – addition, subtraction, multiplication, and division

  • Conjugate of a complex number.

  • Modulus in a complex number

  • Argand plane

  • Polar form

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Study Important Questions for Class 11 Maths Chapter 4 – Complex Numbers and Quadratic Equations

Very Short Answer Questions: (1 Marks)

1. Evaluate the value of ${{i}^{-39}}$.

Ans:

Let us solve the given expression further –

${{i}^{-39}}={{i}^{-38-1}}$

$\Rightarrow {{i}^{-39}}={{({{i}^{2}})}^{-19}}.\dfrac{1}{i}$

$\Rightarrow {{i}^{-39}}={{(-1)}^{-19}}.\dfrac{1}{i}$

$\Rightarrow {{i}^{-39}}=-\dfrac{1}{i}\times \dfrac{i}{i}$

Therefore,

${{i}^{-39}}=i$


2. Solve the quadratic equation ${{x}^{2}}+x+\dfrac{1}{\sqrt{2}}=0$.

Ans:

Let us further solve the given quadratic equation ${{x}^{2}}+x+\dfrac{1}{\sqrt{2}}=0$.

$\Rightarrow \sqrt{2}{{x}^{2}}+\sqrt{2}x+1=0$.

Hence, we have $a=\sqrt{2}$,

$b=\sqrt{2}$, and

$c=1$.

We will find the roots by the formula $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.

Therefore,

\[\Rightarrow x=\dfrac{-\sqrt{2}\pm \sqrt{{{(\sqrt{2})}^{2}}-4\sqrt{2}}}{2\sqrt{2}}\]

\[\Rightarrow x=\dfrac{-\sqrt{2}\pm \sqrt{2-4\sqrt{2}}}{2\sqrt{2}}\]

\[\Rightarrow x=\dfrac{-\sqrt{2}\pm \sqrt{2}\sqrt{1-2\sqrt{2}}}{2\sqrt{2}}\]

\[\Rightarrow x=\dfrac{-1\pm i\sqrt{2\sqrt{2}-1}}{2}\]


3. If ${{\left( \dfrac{1+i}{1-i} \right)}^{m}}=1$, then find the least positive integral value of $m$.

Ans:

Let us simplify the given expression –

${{\left( \dfrac{1+i}{1-i} \right)}^{m}}={{\left( \dfrac{1+i}{1-i}\times \dfrac{1+i}{1+i} \right)}^{m}}$

$\Rightarrow {{\left( \dfrac{1+2i-1}{1+1} \right)}^{m}}$

$\Rightarrow {{\left( \dfrac{2i}{2} \right)}^{m}}$

$\Rightarrow {{i}^{m}}=1$

Now, we know that ${{i}^{4n}}=1$.

Therefore, ${{i}^{m}}={{i}^{4n}}$

$\Rightarrow m=4n$.

Where $n$ is an integer.

Hence, the least positive integral value of $m$ is $4$.


4. Evaluate the expression ${{(1+i)}^{4}}$.

Ans:

Let us simplify the given expression –

\[{{(1+i)}^{4}}={{\left[ {{(1+i)}^{2}} \right]}^{2}}\]

\[\Rightarrow {{\left( 1+i2+{{i}^{2}} \right)}^{2}}\]

\[\Rightarrow {{\left( 1+i2-1 \right)}^{2}}\]

\[\Rightarrow 4{{i}^{2}}\]

\[\Rightarrow -4\]

Hence, \[{{(1+i)}^{4}}=-4+0i\].


5. Find the modulus of \[\dfrac{1+i}{1-i}-\dfrac{1-i}{1+i}\].

Ans:

Let us simplify the given expression –

\[z= \dfrac{1+i}{1-i}-\dfrac{1-i}{1+i}=\dfrac{{{\left( 1+i \right)}^{2}}-{{\left( 1-i \right)}^{2}}}{\left( 1-i \right)\left( 1+i \right)}\]

\[= \dfrac{\left( 1+2i-1 \right)-\left( 1-2i-1 \right)}{1+1}\]

\[= \dfrac{2i+2i}{2}\]

\[\Rightarrow z=2i\]

Hence, the modulus will be –

\[\left| z \right|=\sqrt{{{0}^{2}}+{{2}^{2}}}\]

\[\Rightarrow \left| z \right|=2\].


6. Express in the form of a+ib: \[{{\left( 1+3i \right)}^{-1}}\].

Ans:

Let us simplify the given expression –

${{\left( 1+3i \right)}^{-1}}=\dfrac{1}{\left( 1+3i \right)}$

\[= \dfrac{1}{\left( 1+3i \right)}\times \dfrac{\left( 1-3i \right)}{\left( 1-3i \right)}\]

\[= \dfrac{1-3i}{1-9{{i}^{2}}}\]

\[= \dfrac{1-3i}{10}\]

Therefore, \[{{\left( 1+3i \right)}^{-1}}=\dfrac{1}{10}-i\dfrac{3}{10}\].


7. Explain the fallacy in $-1=i.i=\sqrt{-1}\sqrt{-1}=\sqrt{(-1)(-1)}=\sqrt{1}=1$.

Ans:

As, the given equation shows that \[\sqrt{-1}\sqrt{-1}=\sqrt{(-1)(-1)}\] is a fallacy because \[\sqrt{-1}\sqrt{-1}={{(\sqrt{-1})}^{2}}\]

\[\Rightarrow \sqrt{-1}\sqrt{-1}=-1\] is correct.


8. Find the conjugate of $\dfrac{1}{2-3i}$.

Ans:

Let us further solve the expression as –

\[\dfrac{1}{2-3i}=\dfrac{1}{2-3i}\times \dfrac{2+3i}{2+3i}\]

\[= \dfrac{2+3i}{4-9{{i}^{2}}}\]

\[= \dfrac{2+3i}{4+9}\]

\[= \dfrac{2+3i}{13}\]

Therefore, the conjugate will be \[\dfrac{2-3i}{13}\].


9. Find the conjugate of $-3i-5$.

Ans:

Let us consider a complex number \[z=-3i-5\].

Therefore, the conjugate will be \[\bar{z}=3i-5\].


10. Let ${{z}_{1}}=2-i$ and

${{z}_{2}}=-2+i$, then find \[\operatorname{Re}\left( \dfrac{{{z}_{1}}{{z}_{2}}}{{{{\bar{z}}}_{1}}} \right)\].

Ans:

Given we have ${{z}_{1}}=2-i$ and

${{z}_{2}}=-2+i$.

Therefore, ${{z}_{1}}{{z}_{2}}=\left( 2-i \right)\left( -2+i \right)$

\[\Rightarrow {{z}_{1}}{{z}_{2}}=-4+2i+2i+1\]

\[\Rightarrow {{z}_{1}}{{z}_{2}}=-3+4i\].

Also, ${{\bar{z}}_{1}}=2+i$.

Hence, $\dfrac{{{z}_{1}}{{z}_{2}}}{{{{\bar{z}}}_{1}}}=\dfrac{-3+4i}{2+i}$

\[\Rightarrow \dfrac{{{z}_{1}}{{z}_{2}}}{{{{\bar{z}}}_{1}}}=\dfrac{-3+4i}{2+i}\times \dfrac{2-i}{2-i}\]

\[\Rightarrow \dfrac{{{z}_{1}}{{z}_{2}}}{{{{\bar{z}}}_{1}}}=\dfrac{-6+3i+8i+4}{4+1}\]

\[\Rightarrow \dfrac{{{z}_{1}}{{z}_{2}}}{{{{\bar{z}}}_{1}}}=\dfrac{-2+11i}{5}\].

Thus, \[\operatorname{Re}\left( \dfrac{{{z}_{1}}{{z}_{2}}}{{{{\bar{z}}}_{1}}} \right)=-\dfrac{2}{5}\].


11. Express in the form of $a+ib:\left( 3i-7 \right)+(7-4i)-(6+3i)+{{i}^{23}}$.

Ans:

Let us simplify the given expression –

$\left( 3i-7 \right)+\left( 7-4i \right)-\left( 6+3i \right)+{{i}^{23}}=3i-7+7-4i-6-3i+{{i}^{23}}$

\[\Rightarrow -4i-6+{{i}^{22+1}}\]

\[\Rightarrow -4i-6+{{({{i}^{2}})}^{11}}.i\]

\[\Rightarrow -4i-6+{{(-1)}^{11}}.i\]

\[\Rightarrow -4i-6-i\]

Therefore, $\left( 3i-7 \right)+\left( 7-4i \right)-\left( 6+3i \right)+{{i}^{23}}=-6-5i$.


12. Find the conjugate of $\sqrt{-3}+4{{i}^{2}}$.

Ans:

Let us simplify the given expression –

\[\sqrt{-3}+4{{i}^{2}}=\sqrt{3}i-4\]

Therefore, the conjugate will be \[\bar{z}=-\sqrt{3}i-4\].


13. Solve for $x$ and $y$, $3x+(2x-y)i=6-3i$.

Ans:

We will equate the real part of the right-hand side with the real part of the left-hand side. Similarly, we will equate their imaginary parts as well.

Therefore,

\[3x=6\] and

\[2x-y=-3\]

\[\Rightarrow x=2\] and

\[\Rightarrow 2(2)-y=-3\]

\[\Rightarrow 4-y=-3\]

\[\Rightarrow y=7\].

Hence, \[x=2\] and 

\[y=7\].


14. Find the value of $1+{{i}^{2}}+{{i}^{4}}+{{i}^{6}}+{{i}^{8}}+......+{{i}^{20}}$.

Ans:

Let us simplify the given expression –

\[1+{{i}^{2}}+{{i}^{4}}+{{i}^{6}}+{{i}^{8}}+......+{{i}^{20}}=1-1+{{({{i}^{2}})}^{2}}+{{({{i}^{2}})}^{3}}+{{({{i}^{2}})}^{4}}+......+{{({{i}^{2}})}^{10}}\]

\[= {{(-1)}^{2}}+{{(-1)}^{3}}+{{(-1)}^{4}}+......+{{(-1)}^{10}}\]

\[= 1-1+1-1+......+1\]

\[= 1\]

Therefore, \[1+{{i}^{2}}+{{i}^{4}}+{{i}^{6}}+{{i}^{8}}+......+{{i}^{20}}=1\].


15. Multiply $3-2i$ by its conjugate.

Ans:

Let there be a complex number \[z=3-2i\]

Hence, its conjugate will be \[\bar{z}=3+2i\].

Therefore, the product of the complex number with its conjugate will be –

\[z\bar{z}=(3-2i)(3+2i)\]

\[\Rightarrow 9+6i-6i-4{{i}^{2}}\]

\[\Rightarrow 9+4\]

Hence, \[(3-2i)(3+2i)=13\].


16. Find the multiplicative inverse of \[4-3i\].

Ans:

Let us assume a complex number \[z=4-3i\].

To find the multiplicative inverse, we need \[\bar{z}\] and \[\left| z \right|\].

Therefore,

\[\bar{z}=4+3i\].

\[\left| z \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}\]

\[\Rightarrow \sqrt{{{4}^{2}}+{{(-3)}^{2}}}\]

\[\Rightarrow \sqrt{16+9}\]

\[\Rightarrow \left| z \right|=5\]

Hence, multiplicative inverse \[{{z}^{-1}}=\dfrac{{\bar{z}}}{{{\left| z \right|}^{2}}}\] will be –

\[{{z}^{-1}}=\dfrac{4+3i}{25}\].

\[\Rightarrow {{z}^{-1}}=\dfrac{4}{25}+i\dfrac{3}{25}\].


17.   Express in the form of\[a+ib:\frac{\left( 3+i\sqrt{5} \right)\left( 3-i\sqrt{5} \right)}{\left( \sqrt{3}+i\sqrt{2} \right)-\left( \sqrt{3}-i\sqrt{2} \right)}\]

Ans:

Let us simplify the given expression –

\[\dfrac{\left( 3+i\sqrt{5} \right)\left( 3-i\sqrt{5} \right)}{\left( \sqrt{3}+i\sqrt{2} \right)-\left( \sqrt{3}-i\sqrt{2} \right)}=\dfrac{3(3-i\sqrt{5})+i\sqrt{5}(3-i\sqrt{5})}{\sqrt{3}+i\sqrt{2}-\sqrt{3}+i\sqrt{2}}\]

\[= \dfrac{9+5}{i2\sqrt{2}}\]

\[= \dfrac{14}{i2\sqrt{2}}\]

\[= \dfrac{7}{i\sqrt{2}}\times \dfrac{i\sqrt{2}}{i\sqrt{2}}\]

\[= -i\dfrac{7\sqrt{2}}{2}\]

Hence, \[\dfrac{\left( 3+i\sqrt{5} \right)\left( 3-i\sqrt{5} \right)}{\left( \sqrt{3}+i\sqrt{2} \right)-\left( \sqrt{3}-i\sqrt{2} \right)}=-i\dfrac{7\sqrt{2}}{2}\].


18. Evaluate the expression ${{i}^{n}}+{{i}^{n+1}}+{{i}^{n+2}}+{{i}^{n+3}}$.

Ans:

Let us simplify the given expression –

\[{{i}^{n}}+{{i}^{n+1}}+{{i}^{n+2}}+{{i}^{n+3}}={{i}^{n}}+{{i}^{n}}.i+{{i}^{n}}.{{i}^{2}}+{{i}^{n}}.{{i}^{2}}.i\]

\[= {{i}^{n}}+{{i}^{n}}.i+(-1){{i}^{n}}+(-1){{i}^{n}}.i\]

\[= {{i}^{n}}(1+i-1-i)\]

\[= 0\]

Therefore, \[{{i}^{n}}+{{i}^{n+1}}+{{i}^{n+2}}+{{i}^{n+3}}=0\]


19. If $1,w,{{w}^{2}}$ are three cube root of unity, show that $(1-w+{{w}^{2}})(1+w-{{w}^{2}})=4$.

Ans:

Let us simplify the given expression –

\[(1-w+{{w}^{2}})(1+w-{{w}^{2}})=(1+w-{{w}^{2}})-w(1+w-{{w}^{2}})+{{w}^{2}}(1+w-{{w}^{2}})\]

\[= (1+w-{{w}^{2}})-w-{{w}^{2}}+{{w}^{3}}+{{w}^{2}}+{{w}^{3}}-{{w}^{4}})\]

\[= 1-{{w}^{2}}+{{w}^{3}}+{{w}^{3}}-{{w}^{4}}\]

Since, \[1,w,{{w}^{2}}\] are three cube roots of unity implies \[{{w}^{3}}=1\].

Therefore,

\[1-{{w}^{2}}+1+1-{{w}^{3}}.w\]

\[\Rightarrow 3-{{w}^{2}}-w\]

Now, we know that $w+{{w}^{2}}=-1$.

Hence, \[3-({{w}^{2}}+w)\]

\[\Rightarrow 3+1=4\]

Hence, proved.


20. Find the sum and product of the complex numbers $-\sqrt{3}+\sqrt{-2}$ and $2\sqrt{3}-i$.

Ans:

Given we have two complex numbers as ${{z}_{1}}=-\sqrt{3}+\sqrt{-2}$ and

${{z}_{2}}=2\sqrt{3}-i$.

Sum will be –

${{z}_{1}}+{{z}_{2}}=-\sqrt{3}+\sqrt{-2}+2\sqrt{3}-i$

$= -\sqrt{3}+2\sqrt{3}+\sqrt{2}i-i$

$= \sqrt{3}+i(\sqrt{2}-1)$

Product will be –

${{z}_{1}}{{z}_{2}}=(-\sqrt{3}+\sqrt{-2})(2\sqrt{3}-i)$

$= -2{{(\sqrt{3})}^{2}}+\sqrt{3}i+2\sqrt{6}i-\sqrt{2}{{i}^{2}}$

$= (\sqrt{2}-6)+\sqrt{3}i(1+2\sqrt{2})$.


21. Write the real and imaginary part $1-2{{i}^{2}}$.

Ans:

Let us simplify the given expression –

$1-2{{i}^{2}}=1-2(-1)$

$= 1+2$

$= 3$

Hence, the real and imaginary parts of $1-2{{i}^{2}}$ are $3$ and $0$.


22. If two complex numbers \[{{z}_{1}},{{z}_{2}}\] are such that \[\left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|\], is it then necessary that \[{{z}_{1}}={{z}_{2}}\].

Ans:

Let us consider ${{z}_{1}}=x+iy$ and

${{z}_{2}}=y+ix$.

Hence, $\left| {{z}_{1}} \right|=\sqrt{{{x}^{2}}+{{y}^{2}}}$ and

$\left| {{z}_{2}} \right|=\sqrt{{{y}^{2}}+{{x}^{2}}}$.

Therefore, it is not necessary that if two complex numbers ${{z}_{1}},{{z}_{2}}$ are such that $\left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|$ then ${{z}_{1}}={{z}_{2}}$.


23. Find the conjugate and modulus of \[\overline{9-i}+\overline{6+{{i}^{3}}}-\overline{9+{{i}^{2}}}\].

Ans:

Let us simplify the given expression –

$\overline{9-i}+\overline{6+{{i}^{3}}}-\overline{9+{{i}^{2}}}=9+i+\overline{6+{{i}^{2}}.i}-\overline{9-1}$

$= 9+i+\overline{6-i}-\overline{8}$

$= 9+i+6+i-8$

$= 7+2i$

Hence, the conjugate will be $\bar{z}=7-2i$.

Modulus will be $\left| z \right|=\sqrt{49+4}$

$\left| z \right|=\sqrt{53}$.


24. Find the number of non-zero integral solutions of the equation \[{{\left| 1-i \right|}^{x}}={{2}^{x}}\].

Ans:

Let us simplify the given expression –

${{\left| 1-i \right|}^{x}}={{2}^{x}}$

$\Rightarrow {{\left( \sqrt{{{1}^{2}}+{{(-1)}^{2}}} \right)}^{x}}={{2}^{x}}$

\[\Rightarrow {{\left( \sqrt{2} \right)}^{x}}={{2}^{x}}\]

\[\Rightarrow {{2}^{\dfrac{x}{2}}}={{2}^{x}}\]

Hence, \[\dfrac{x}{2}=x\]

\[\Rightarrow 2x-x=0\]

\[\Rightarrow x=0\].

Therefore, the integral solution of the equation ${{\left| 1-i \right|}^{x}}={{2}^{x}}$ is 

\[x=0\]. Hence, the number of non-zero integral solutions will be zero.


25. If \[(a+ib)(c+id)(e+if)(g+ih)=A+iB\], then show that: \[({{a}^{2}}+{{b}^{2}})({{c}^{2}}+{{d}^{2}})({{e}^{2}}+{{f}^{2}})({{g}^{2}}+{{h}^{2}})={{A}^{2}}+{{B}^{2}}\].

Ans:

We know that \[\left| {{z}_{1}}{{z}_{2}} \right|=\left| {{z}_{1}} \right|\left| {{z}_{2}} \right|\].

Therefore,

$\Rightarrow \left| (a+ib)(c+id)(e+if)(g+ih) \right|=\left| A+iB \right|$

$\Rightarrow \left| (a+ib) \right|\left| (c+id) \right|\left| (e+if) \right|\left| (g+ih) \right|=\left| A+iB \right|$

\[\Rightarrow \sqrt{{{a}^{2}}+{{b}^{2}}}\times \sqrt{{{c}^{2}}+{{d}^{2}}}\times \sqrt{{{e}^{2}}+{{f}^{2}}}\times \sqrt{{{g}^{2}}+{{h}^{2}}}=\sqrt{{{A}^{2}}+{{B}^{2}}}\]

\[\Rightarrow \sqrt{\left( {{a}^{2}}+{{b}^{2}} \right)\left( {{c}^{2}}+{{d}^{2}} \right)\left( {{e}^{2}}+{{f}^{2}} \right)\left( {{g}^{2}}+{{h}^{2}} \right)}=\sqrt{{{A}^{2}}+{{B}^{2}}}\]

\[\Rightarrow \left( {{a}^{2}}+{{b}^{2}} \right)\left( {{c}^{2}}+{{d}^{2}} \right)\left( {{e}^{2}}+{{f}^{2}} \right)\left( {{g}^{2}}+{{h}^{2}} \right)={{A}^{2}}+{{B}^{2}}\]

Hence, proved.


Long Answer Questions: (4 Marks)

1. If \[x+iy=\dfrac{a+ib}{a-ib}\], Prove that \[{{x}^{2}}+{{y}^{2}}=1\].

Ans:

We have \[x+iy=\dfrac{a+ib}{a-ib}\].

Let us rationalise the denominator.

Hence, \[\dfrac{a+ib}{a-ib}=\dfrac{a+ib}{a-ib}\times \dfrac{a+ib}{a+ib}\]

\[\Rightarrow \dfrac{a+ib}{a-ib}=\dfrac{{{\left( a+ib \right)}^{2}}}{{{a}^{2}}-{{i}^{2}}{{b}^{2}}}\]

\[\Rightarrow \dfrac{a+ib}{a-ib}=\dfrac{{{a}^{2}}-{{b}^{2}}+2abi}{{{a}^{2}}+{{b}^{2}}}\]

\[\Rightarrow x+iy=\dfrac{{{a}^{2}}-{{b}^{2}}+2abi}{{{a}^{2}}+{{b}^{2}}}\]

Now, we will equate both real and imaginary parts from both sides.

Therefore,

\[x=\dfrac{{{a}^{2}}-{{b}^{2}}}{{{a}^{2}}+{{b}^{2}}}\] and

\[y=\dfrac{2ab}{{{a}^{2}}+{{b}^{2}}}\]

Hence, we have –

\[{{x}^{2}}+{{y}^{2}}=\dfrac{{{\left( {{a}^{2}}-{{b}^{2}} \right)}^{2}}}{{{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}}+\dfrac{4{{a}^{2}}{{b}^{2}}}{{{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}}\]

\[\Rightarrow {{x}^{2}}+{{y}^{2}}=\dfrac{{{a}^{4}}+{{b}^{4}}-2{{a}^{2}}{{b}^{2}}+4{{a}^{2}}{{b}^{2}}}{{{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}}\]

\[\Rightarrow {{x}^{2}}+{{y}^{2}}=\dfrac{{{a}^{4}}+{{b}^{4}}+2{{a}^{2}}{{b}^{2}}}{{{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}}\]

\[\Rightarrow {{x}^{2}}+{{y}^{2}}=\dfrac{{{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}}{{{\left( {{a}^{2}}+{{b}^{2}} \right)}^{2}}}\]

\[\Rightarrow {{x}^{2}}+{{y}^{2}}=1\]

Hence, proved.


2. Find real \[\theta \] such that \[\dfrac{3+2i\sin \theta }{1-2i\sin \theta }\] is purely real.

Ans:

Let us rationalise the denominator.

Hence, 

\[\dfrac{3+2i\sin \theta }{1-2i\sin \theta }=\dfrac{3+2i\sin \theta }{1-2i\sin \theta }\times \dfrac{1+2i\sin \theta }{1+2i\sin \theta }\]

\[\Rightarrow \dfrac{3+2i\sin \theta }{1-2i\sin \theta }=\dfrac{3+6i\sin \theta +2i\sin \theta +4{{i}^{2}}{{\sin }^{2}}\theta }{1-4{{i}^{2}}{{\sin }^{2}}\theta }\]

\[\Rightarrow \dfrac{3+2i\sin \theta }{1-2i\sin \theta }=\dfrac{3+8i\sin \theta -4{{\sin }^{2}}\theta }{1+4{{\sin }^{2}}\theta }\]

\[\Rightarrow \dfrac{3+2i\sin \theta }{1-2i\sin \theta }=\dfrac{3-4{{\sin }^{2}}\theta }{1+4{{\sin }^{2}}\theta }+i\dfrac{8\sin \theta }{1+4{{\sin }^{2}}\theta }\]

For the above expression to be purely real the imaginary part should be equal to zero.

Therefore,

\[i\dfrac{8\sin \theta }{1+4{{\sin }^{2}}\theta }=0\]

\[\Rightarrow 8\sin \theta =0\]

\[\Rightarrow \theta ={{\sin }^{-1}}(\sin n\pi )\]

\[\Rightarrow \theta =n\pi \].


3. Find the modulus of \[\dfrac{(1+i)(2+i)}{3+i}\].

Ans:

Let us rationalise the denominator.

Hence, 

\[\dfrac{(1+i)(2+i)}{3+i}=\dfrac{2+i+2i-1}{3+i}\times \dfrac{3-i}{3-i}\]

\[\Rightarrow \dfrac{(1+i)(2+i)}{3+i}=\dfrac{(1+3i)(3-i)}{9+1}\]

\[\Rightarrow \dfrac{(1+i)(2+i)}{3+i}=\dfrac{3-i+9i+3}{10}\]

\[\Rightarrow \dfrac{(1+i)(2+i)}{3+i}=\dfrac{6+8i}{10}\]

\[\Rightarrow \dfrac{(1+i)(2+i)}{3+i}=\dfrac{3+4i}{5}\]

Therefore, the modulus will be –

\[\Rightarrow \left| z \right|=\sqrt{{{\left( \dfrac{3}{5} \right)}^{2}}+{{\left( \dfrac{4}{5} \right)}^{2}}}\]

\[\Rightarrow \left| z \right|=\sqrt{\dfrac{9}{25}+\dfrac{16}{25}}\]

\[\Rightarrow \left| z \right|=1\].


4. If \[\left| a+ib \right|=1\] then Show that \[\dfrac{1+b+ia}{1+b-ia}=b+ia\].

Ans:

Given we have \[\left| a+ib \right|=1\].

\[\Rightarrow {{a}^{2}}+{{b}^{2}}=1\].

Now, let us simplify the left-hand side –

\[\dfrac{1+b+ia}{1+b-ia}=\dfrac{(1+b)+ia}{(1+b)-ia}\times \dfrac{(1+b)+ia}{(1+b)+ia}\]

\[\Rightarrow \dfrac{1+b+ia}{1+b-ia}=\dfrac{{{\left[ (1+b)+ia \right]}^{2}}}{{{(1+b)}^{2}}+{{a}^{2}}}\]

\[\Rightarrow \dfrac{1+b+ia}{1+b-ia}=\dfrac{{{(1+b)}^{2}}+2ia(1+b)-{{a}^{2}}}{{{(1+b)}^{2}}+{{a}^{2}}}\]

\[\Rightarrow \dfrac{1+b+ia}{1+b-ia}=\dfrac{1+2b+{{b}^{2}}+2ia+2iab-{{a}^{2}}}{1+2b+{{b}^{2}}+{{a}^{2}}}\]

Therefore,

\[\dfrac{1+b+ia}{1+b-ia}=\dfrac{{{a}^{2}}+{{b}^{2}}+2b+{{b}^{2}}+2ia+2iab-{{a}^{2}}}{{{a}^{2}}+{{b}^{2}}+2b+{{b}^{2}}+{{a}^{2}}}\]

\[\Rightarrow \dfrac{1+b+ia}{1+b-ia}=\dfrac{2{{b}^{2}}+2b+2ia+2iab}{2{{a}^{2}}+2{{b}^{2}}+2b}\]

\[\Rightarrow \dfrac{1+b+ia}{1+b-ia}=\dfrac{{{b}^{2}}+b+ia+iab}{{{a}^{2}}+{{b}^{2}}+b}\]

\[\Rightarrow \dfrac{1+b+ia}{1+b-ia}=\dfrac{b(b+1)+ia(1+b)}{1+b}\]

\[\Rightarrow \dfrac{1+b+ia}{1+b-ia}=b+ia\].

Hence, proved.


5.   If $x-iy=\sqrt{\dfrac{a-ib}{c-id}}$ prove that 

${{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}=\dfrac{{{a}^{2}}+{{b}^{2}}}{{{c}^{2}}+{{d}^{2}}}$.

Ans:

We have \[x-iy=\sqrt{\dfrac{a-ib}{c-id}}\].

Let us rationalise the denominator.

Hence, \[\sqrt{\dfrac{a-ib}{c-id}}=\sqrt{\dfrac{a-ib}{c-id}\times \dfrac{c+id}{c+id}}\]

\[\Rightarrow \sqrt{\dfrac{a-ib}{c-id}}=\sqrt{\dfrac{ac+iad-ibc+bd}{{{c}^{2}}+{{d}^{2}}}}\]

\[\Rightarrow \sqrt{\dfrac{a-ib}{c-id}}=\sqrt{\dfrac{ac+bd+i(ad-bc)}{{{c}^{2}}+{{d}^{2}}}}\]

Therefore,

\[x-iy=\sqrt{\dfrac{ac+bd+i(ad-bc)}{{{c}^{2}}+{{d}^{2}}}}\]

\[\Rightarrow {{\left( x-iy \right)}^{2}}=\dfrac{ac+bd+i(ad-bc)}{{{c}^{2}}+{{d}^{2}}}\]

\[\Rightarrow {{x}^{2}}-{{y}^{2}}-2ixy=\dfrac{ac+bd+i(ad-bc)}{{{c}^{2}}+{{d}^{2}}}\]

By comparing both the sides, we get –

\[{{x}^{2}}-{{y}^{2}}=\dfrac{ac+bd}{{{c}^{2}}+{{d}^{2}}}\] and

\[-2xy=\dfrac{(ad-bc)}{{{c}^{2}}+{{d}^{2}}}\].

Now, we know that \[{{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}={{\left( {{x}^{2}}-{{y}^{2}} \right)}^{2}}+4{{x}^{2}}{{y}^{2}}\].

\[\Rightarrow {{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}={{\left( \dfrac{ac+bd}{{{c}^{2}}+{{d}^{2}}} \right)}^{2}}+{{\left( \dfrac{ad-bc}{{{c}^{2}}+{{d}^{2}}} \right)}^{2}}\]

\[\Rightarrow {{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}=\dfrac{{{a}^{2}}{{c}^{2}}+{{b}^{2}}{{d}^{2}}+{{a}^{2}}{{d}^{2}}+{{b}^{2}}{{c}^{2}}+2abcd-2abcd}{{{\left( {{c}^{2}}+{{d}^{2}} \right)}^{2}}}\]

\[\Rightarrow {{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}=\dfrac{{{a}^{2}}({{c}^{2}}+{{d}^{2}})+{{b}^{2}}({{c}^{2}}+{{d}^{2}})}{{{\left( {{c}^{2}}+{{d}^{2}} \right)}^{2}}}\]

\[\Rightarrow {{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}=\dfrac{\left( {{a}^{2}}+{{b}^{2}} \right)\left( {{c}^{2}}+{{d}^{2}} \right)}{{{\left( {{c}^{2}}+{{d}^{2}} \right)}^{2}}}\]

\[\Rightarrow {{\left( {{x}^{2}}+{{y}^{2}} \right)}^{2}}=\dfrac{{{a}^{2}}+{{b}^{2}}}{{{c}^{2}}+{{d}^{2}}}\].

Hence, proved.


6.   If \[a+ib=\dfrac{c+i}{c-i}\], where \[a,b,c\] are real. Prove that \[{{a}^{2}}+{{b}^{2}}=1\] and \[\dfrac{b}{a}=\dfrac{2c}{{{c}^{2}}-1}\].

Ans:

Given we have \[a+ib=\dfrac{c+i}{c-i}\].

Let us simplify the right-hand side –

Hence,

\[\dfrac{c+i}{c-i}=\dfrac{c+i}{c-i}\times \dfrac{c+i}{c+i}\]

\[\Rightarrow \dfrac{c+i}{c-i}=\dfrac{{{\left( c+i \right)}^{2}}}{{{c}^{2}}+1}\]

\[\Rightarrow \dfrac{c+i}{c-i}=\dfrac{{{c}^{2}}+2ic-1}{{{c}^{2}}+1}\]

\[\Rightarrow a+ib=\dfrac{{{c}^{2}}-1}{{{c}^{2}}+1}+i\dfrac{2c}{{{c}^{2}}+1}\]

By comparing real and imaginary parts we get –

\[a=\dfrac{{{c}^{2}}-1}{{{c}^{2}}+1}\] and

\[b=\dfrac{2c}{{{c}^{2}}+1}\]

Therefore,

\[{{a}^{2}}+{{b}^{2}}={{\left( \dfrac{{{c}^{2}}-1}{{{c}^{2}}+1} \right)}^{2}}+{{\left( \dfrac{2c}{{{c}^{2}}+1} \right)}^{2}}\]

\[\Rightarrow {{a}^{2}}+{{b}^{2}}=\dfrac{{{\left( {{c}^{2}}-1 \right)}^{2}}}{{{\left( {{c}^{2}}+1 \right)}^{2}}}+\dfrac{4{{c}^{2}}}{{{\left( {{c}^{2}}+1 \right)}^{2}}}\]

\[\Rightarrow {{a}^{2}}+{{b}^{2}}=\dfrac{{{\left( {{c}^{2}}+1 \right)}^{2}}}{{{\left( {{c}^{2}}+1 \right)}^{2}}}\]

\[\Rightarrow {{a}^{2}}+{{b}^{2}}=1\].

Hence, proved.

Similarly, we have –

\[\dfrac{b}{a}=\dfrac{\dfrac{2c}{{{c}^{2}}+1}}{\dfrac{{{c}^{2}}-1}{{{c}^{2}}+1}}\]

\[\Rightarrow \dfrac{b}{a}=\dfrac{2c}{{{c}^{2}}-1}\]

Hence, proved.


7.   If \[{{z}_{1}}=2-i,\] 

\[{{z}_{2}}=1+i,\] find \[\left| \dfrac{{{z}_{1}}+{{z}_{2}}+1}{{{z}_{1}}-{{z}_{2}}+i} \right|\].

Ans:

Given we have ${{z}_{1}}=2-i$ and

${{z}_{2}}=1+i$.

Therefore, ${{z}_{1}}+{{z}_{2}}+1=2-i+1+i+1$

$\Rightarrow {{z}_{1}}+{{z}_{2}}+1=4$

Also, ${{z}_{1}}-{{z}_{2}}+i=2-i-(1+i)+i$

$\Rightarrow {{z}_{1}}-{{z}_{2}}+i=2-i-1-i+i$

$\Rightarrow {{z}_{1}}-{{z}_{2}}+i=1-i$.

Hence, the equation \[\left| \dfrac{{{z}_{1}}+{{z}_{2}}+1}{{{z}_{1}}-{{z}_{2}}+i} \right|\] becomes –

\[\left| \dfrac{{{z}_{1}}+{{z}_{2}}+1}{{{z}_{1}}-{{z}_{2}}+i} \right|=\left| \dfrac{4}{1-i} \right|\]

\[\Rightarrow \left| \dfrac{{{z}_{1}}+{{z}_{2}}+1}{{{z}_{1}}-{{z}_{2}}+i} \right|=\dfrac{\left| 4 \right|}{\left| 1-i \right|}\]

\[\Rightarrow \left| \dfrac{{{z}_{1}}+{{z}_{2}}+1}{{{z}_{1}}-{{z}_{2}}+i} \right|=\dfrac{4}{\sqrt{2}}\]

\[\Rightarrow \left| \dfrac{{{z}_{1}}+{{z}_{2}}+1}{{{z}_{1}}-{{z}_{2}}+i} \right|=\dfrac{4}{\sqrt{2}}\times \dfrac{\sqrt{2}}{\sqrt{2}}\]

\[\Rightarrow \left| \dfrac{{{z}_{1}}+{{z}_{2}}+1}{{{z}_{1}}-{{z}_{2}}+i} \right|=\dfrac{4\sqrt{2}}{2}\]

Hence, the value of \[\left| \dfrac{{{z}_{1}}+{{z}_{2}}+1}{{{z}_{1}}-{{z}_{2}}+i} \right|=2\sqrt{2}\].


8.   If \[{{(p+iq)}^{2}}=x+iy\]. Prove that \[{{({{p}^{2}}+{{q}^{2}})}^{2}}={{x}^{2}}+{{y}^{2}}\].

Ans:

Let us simplify the left-hand side –

\[{{(p+iq)}^{2}}={{p}^{2}}-{{q}^{2}}+2pqi\]

\[\Rightarrow {{p}^{2}}-{{q}^{2}}+2pqi=x+iy\]

Therefore, after comparing real and imaginary parts of both sides, we get –

\[{{p}^{2}}-{{q}^{2}}=x\] and

\[2pq=y\].

Hence,

\[{{\left( {{p}^{2}}-{{q}^{2}} \right)}^{2}}+4{{p}^{2}}{{q}^{2}}={{x}^{2}}+{{y}^{2}}\]

\[\Rightarrow {{p}^{4}}+{{q}^{4}}-2{{p}^{2}}{{q}^{2}}+4{{p}^{2}}{{q}^{2}}={{x}^{2}}+{{y}^{2}}\]

\[\Rightarrow {{p}^{4}}+{{q}^{4}}+2{{p}^{2}}{{q}^{2}}={{x}^{2}}+{{y}^{2}}\]

\[{{\left( {{p}^{2}}+{{q}^{2}} \right)}^{2}}={{x}^{2}}+{{y}^{2}}\].

Hence, proved.


9.   If \[a+ib=\dfrac{{{(x+i)}^{2}}}{2{{x}^{2}}+1}\]. Prove that \[{{a}^{2}}+{{b}^{2}}=\dfrac{{{({{x}^{2}}+1)}^{2}}}{{{(2{{x}^{2}}+1)}^{2}}}\].

Ans:

Let us simplify the right-hand side of the given expression –

\[\dfrac{{{(x+i)}^{2}}}{2{{x}^{2}}+1}=\dfrac{{{x}^{2}}-1+2xi}{2{{x}^{2}}+1}\]

\[\Rightarrow a+ib=\dfrac{{{x}^{2}}-1+2xi}{2{{x}^{2}}+1}\]

Comparing real and imaginary parts of both sides, we get –

\[a=\dfrac{{{x}^{2}}-1}{2{{x}^{2}}+1}\] and

\[b=\dfrac{2x}{2{{x}^{2}}+1}\].

Hence,

\[{{a}^{2}}+{{b}^{2}}={{\left( \dfrac{{{x}^{2}}-1}{2{{x}^{2}}+1} \right)}^{2}}+{{\left( \dfrac{2x}{2{{x}^{2}}+1} \right)}^{2}}\]

\[\Rightarrow {{a}^{2}}+{{b}^{2}}=\dfrac{{{\left( {{x}^{2}}-1 \right)}^{2}}}{{{\left( 2{{x}^{2}}+1 \right)}^{2}}}+\dfrac{4{{x}^{2}}}{{{\left( 2{{x}^{2}}+1 \right)}^{2}}}\]

\[\Rightarrow {{a}^{2}}+{{b}^{2}}=\dfrac{{{x}^{4}}+1+2{{x}^{2}}}{{{\left( 2{{x}^{2}}+1 \right)}^{2}}}\]

\[\Rightarrow {{a}^{2}}+{{b}^{2}}=\dfrac{{{({{x}^{2}}+1)}^{2}}}{{{\left( 2{{x}^{2}}+1 \right)}^{2}}}\]

Hence, proved.

 

10. If \[{{(x+iy)}^{3}}=u+iv\], then show that: 

\[\dfrac{u}{x}+\dfrac{v}{y}=4({{x}^{2}}-{{y}^{2}})\].

Ans:

We will simplify the given equation by using the identity \[{{\left( a+b \right)}^{3}}={{a}^{3}}+{{b}^{3}}+3ab\left( a+b \right)\].

Therefore,

\[{{\left( x+iy \right)}^{3}}={{x}^{3}}+{{i}^{3}}{{y}^{3}}+3xyi\left( x+iy \right)\]

\[\Rightarrow {{x}^{3}}-i{{y}^{3}}+3{{x}^{2}}yi-3x{{y}^{2}}\]

\[\Rightarrow x\left( {{x}^{2}}-3{{y}^{2}} \right)+iy\left( 3{{x}^{2}}-{{y}^{2}} \right)\]

Hence, \[x\left( {{x}^{2}}-3{{y}^{2}} \right)+iy\left( 3{{x}^{2}}-{{y}^{2}} \right)=u+iv\].

Comparing both real and imaginary parts, we get –

\[u=x\left( {{x}^{2}}-3{{y}^{2}} \right)\] and

\[v=y\left( 3{{x}^{2}}-{{y}^{2}} \right)\].

Therefore, $\dfrac{u}{x}+\dfrac{v}{y}=\left( {{x}^{2}}-3{{y}^{2}} \right)+\left( 3{{x}^{2}}-{{y}^{2}} \right)$

$\Rightarrow \dfrac{u}{x}+\dfrac{v}{y}=4{{x}^{2}}-4{{y}^{2}}$

$\Rightarrow \dfrac{u}{x}+\dfrac{v}{y}=4\left( {{x}^{2}}-{{y}^{2}} \right)$.

Hence, proved.

 

11. Solve \[\sqrt{3}{{x}^{2}}-\sqrt{2}x+3\sqrt{3}=0\].

Ans:

As, the given equation is a quadratic polynomial. Therefore, we can find the roots of the equation by determining the discriminant.

Hence, we have $a=\sqrt{3}$,

$b=-\sqrt{2}$, and

$c=3\sqrt{3}$.

Therefore, roots will be –

$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$

$\Rightarrow x=\dfrac{\sqrt{2}\pm \sqrt{2-36}}{2\sqrt{3}}$

$\Rightarrow x=\dfrac{\sqrt{2}\pm \sqrt{34}\times \sqrt{-1}}{2\sqrt{3}}$

$\Rightarrow x=\dfrac{\sqrt{2}\pm \sqrt{34}i}{2\sqrt{3}}$.

 

12. Find the modulus of \[{{i}^{25}}+{{(1+3i)}^{3}}\].

Ans:

Let us simplify the given expression –

${{i}^{25}}+{{(1+3i)}^{3}}={{({{i}^{2}})}^{12}}.i+1+27{{i}^{3}}+9i-27$

$\Rightarrow i+1-27i+9i-27$

$\Rightarrow z=-17i-26$.

Therefore, the modulus will be –

$\left| z \right|=\sqrt{{{\left( 17 \right)}^{2}}+{{\left( 26 \right)}^{2}}}$

$\left| z \right|=\sqrt{965}$

 

13. If \[a+ib=\dfrac{{{(x+i)}^{2}}}{2x-i}\]. Prove that \[{{a}^{2}}+{{b}^{2}}=\dfrac{{{({{x}^{2}}+1)}^{2}}}{4{{x}^{2}}+1}\].

Ans:

Let us simplify the right-hand side of the given expression –

\[\dfrac{{{(x+i)}^{2}}}{2x-i}=\dfrac{{{x}^{2}}-1+2xi}{2x-i}\]

\[\Rightarrow \dfrac{{{(x+i)}^{2}}}{2x-i}=\dfrac{{{x}^{2}}-1+2xi}{2x-i}\times \dfrac{2x+i}{2x+i}\]

\[\Rightarrow \dfrac{{{(x+i)}^{2}}}{2x-i}=\dfrac{2{{x}^{3}}+i{{x}^{2}}-2x-i+4{{x}^{2}}i-2x}{4{{x}^{2}}+1}\]

\[\Rightarrow \dfrac{{{(x+i)}^{2}}}{2x-i}=\dfrac{2{{x}^{3}}-4x+i(5{{x}^{2}}-1)}{4{{x}^{2}}+1}\]

\[\Rightarrow a+ib=\dfrac{2{{x}^{3}}-4x+i(5{{x}^{2}}-1)}{4{{x}^{2}}+1}\]

Comparing real and imaginary parts of both sides, we get –

\[a=\dfrac{2{{x}^{3}}-4x}{4{{x}^{2}}+1}\] and

\[b=\dfrac{5{{x}^{2}}-1}{4{{x}^{2}}+1}\].

Hence,

\[{{a}^{2}}+{{b}^{2}}={{\left( \dfrac{2{{x}^{3}}-4x}{4{{x}^{2}}+1} \right)}^{2}}+{{\left( \dfrac{5{{x}^{2}}-1}{4{{x}^{2}}+1} \right)}^{2}}\]

\[\Rightarrow {{a}^{2}}+{{b}^{2}}=\dfrac{{{\left( 2{{x}^{3}}-4x \right)}^{2}}+{{\left( 5{{x}^{2}}-1 \right)}^{2}}}{{{\left( 4{{x}^{2}}+1 \right)}^{2}}}\]

\[\Rightarrow {{a}^{2}}+{{b}^{2}}=\dfrac{4{{x}^{6}}+16{{x}^{2}}-16{{x}^{4}}+25{{x}^{4}}+1-10{{x}^{2}}}{{{\left( 4{{x}^{2}}+1 \right)}^{2}}}\]

\[\Rightarrow {{a}^{2}}+{{b}^{2}}=\dfrac{4{{x}^{6}}+6{{x}^{2}}+9{{x}^{4}}+1}{{{\left( 4{{x}^{2}}+1 \right)}^{2}}}\]

\[\Rightarrow {{a}^{2}}+{{b}^{2}}=\dfrac{\left( 4{{x}^{2}}+1 \right)\left( {{x}^{4}}+2{{x}^{2}}+1 \right)}{{{\left( 4{{x}^{2}}+1 \right)}^{2}}}\]

\[\Rightarrow {{a}^{2}}+{{b}^{2}}=\dfrac{{{\left( {{x}^{2}}+1 \right)}^{2}}}{4{{x}^{2}}+1}\]

Hence, proved.

 

14. Evaluate the given expression: ${{\left[ {{i}^{18}}+{{\left( \dfrac{1}{i} \right)}^{25}} \right]}^{3}}$.

Ans:

Let us simplify the given expression –

${{\left[ {{i}^{18}}+{{\left( \dfrac{1}{i} \right)}^{25}} \right]}^{3}}={{\left[ {{\left( {{i}^{2}} \right)}^{9}}+{{\left( \dfrac{1}{i} \right)}^{24+1}} \right]}^{3}}$

\[\Rightarrow {{\left[ {{\left( -1 \right)}^{9}}+\dfrac{1}{{{i}^{24}}.i} \right]}^{3}}\]

\[\Rightarrow {{\left[ -1+\dfrac{1}{{{\left( {{i}^{2}} \right)}^{12}}.i} \right]}^{3}}\]

\[\Rightarrow {{\left[ -1+\dfrac{1}{i} \right]}^{3}}\]

\[\Rightarrow -{{\left[ 1-\dfrac{1}{i} \right]}^{3}}\]

Now, we will further solve by using the identity \[{{\left( a-b \right)}^{3}}={{a}^{3}}-{{b}^{3}}-3ab\left( a-b \right)\].

\[\Rightarrow -{{\left[ 1-\dfrac{1}{i} \right]}^{3}}=-\left[ {{1}^{3}}-{{\left( \dfrac{1}{i} \right)}^{3}}-3\times \dfrac{1}{i}\left( 1-\dfrac{1}{i} \right) \right]\]

\[\Rightarrow -\left[ 1-\dfrac{1}{{{i}^{2}}.i}-\dfrac{3}{i}+\dfrac{3}{{{i}^{2}}} \right]\]

\[\Rightarrow -\left[ 1+\dfrac{1}{i}-\dfrac{3}{i}-3 \right]\]

\[\Rightarrow -\left[ -2-\dfrac{2}{i}\times \dfrac{i}{i} \right]\]

\[\Rightarrow -\left[ -2+2i \right]\]

Hence, \[{{\left[ {{i}^{18}}+{{\left( \dfrac{1}{i} \right)}^{25}} \right]}^{3}}=2-2i\].

 

15. Find the modulus and argument of \[\dfrac{1+i}{1-i}\].

Ans:

Let us simplify the given expression –

\[\dfrac{1+i}{1-i}=\dfrac{1+i}{1-i}\times \dfrac{1+i}{1+i}\]

\[\Rightarrow \dfrac{1+i}{1-i}=\dfrac{1+2i-1}{1+1}\]

\[\Rightarrow \dfrac{1+i}{1-i}=\dfrac{2i}{2}\]

\[\Rightarrow z=i\]

Hence, the modulus will be –

\[\left| z \right|=\sqrt{{{0}^{2}}+{{1}^{2}}}\]

\[\Rightarrow \left| z \right|=1\].

Argument will be –

$\theta ={{\tan }^{-1}}\dfrac{y}{x}$

$\Rightarrow \theta ={{\tan }^{-1}}\dfrac{1}{0}$

$\Rightarrow \theta ={{\tan }^{-1}}(\tan \dfrac{\pi }{2})$

$\Rightarrow \theta =\dfrac{\pi }{2}$.

Hence, the modulus is \[1\] and argument is $\dfrac{\pi }{2}$.

 

16. For what real value of \[x\] and \[y\] are numbers equal \[(1+i){{y}^{2}}+(6+i)\] and \[(2+i)x\].

Ans:

Let us equate both the numbers as –

\[(1+i){{y}^{2}}+(6+i)=(2+i)x\]

\[\Rightarrow ({{y}^{2}}+6)+i({{y}^{2}}+1)=2x+ix\]

\[\Rightarrow {{y}^{2}}+6=2x\] and

\[{{y}^{2}}+1=x\]

After solving both the equations obtained, we get –

\[x=5\] and

\[y=\pm 2\].

 

17. If \[x+iy=\sqrt{\dfrac{1+i}{1-i}}\], prove that \[{{x}^{2}}+{{y}^{2}}=1\].

Ans:

Let us simplify the right-hand side of the given expression –

\[\sqrt{\dfrac{1+i}{1-i}}=\sqrt{\dfrac{1+i}{1-i}\times \dfrac{1+i}{1+i}}\]

\[\Rightarrow \sqrt{\dfrac{1+i}{1-i}}=\sqrt{\dfrac{{{\left( 1+i \right)}^{2}}}{1+1}}\]

\[\Rightarrow \sqrt{\dfrac{1+i}{1-i}}=\dfrac{1+i}{\sqrt{2}}\]

\[\Rightarrow x+iy=\dfrac{1+i}{\sqrt{2}}\]

Comparing real and imaginary parts of both sides, we get –

\[x=\dfrac{1}{\sqrt{2}}\] and

\[y=\dfrac{1}{\sqrt{2}}\].

Hence,

\[{{x}^{2}}+{{y}^{2}}={{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}+{{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}\]

\[\Rightarrow {{x}^{2}}+{{y}^{2}}=\dfrac{1}{2}+\dfrac{1}{2}\]

\[\Rightarrow {{x}^{2}}+{{y}^{2}}=1\]

Hence, proved.

 

18. Convert in the polar form $\dfrac{1+7i}{{{(2-i)}^{2}}}$.

Ans:

Let us simplify the given expression –

$\dfrac{1+7i}{{{(2-i)}^{2}}}=\dfrac{1+7i}{4-1-4i}$

$\Rightarrow \dfrac{1+7i}{3-4i}\times \dfrac{3+4i}{3+4i}$

$\Rightarrow \dfrac{3+4i+21i-28}{9+16}$

$\Rightarrow \dfrac{25i-25}{25}$

$\Rightarrow z=-1+i$.

Now, let $r\cos \theta =-1$ and 

$r\sin \theta =1$.

Now, let us add the squared value of both the equations.

Therefore,

${{r}^{2}}{{\cos }^{2}}\theta +{{r}^{2}}{{\sin }^{2}}\theta =2$

$\Rightarrow {{r}^{2}}({{\cos }^{2}}\theta +{{\sin }^{2}}\theta )=2$

$\Rightarrow r=\sqrt{2}$.

Hence, we have –

$\sqrt{2}\cos \theta =-1$ and 

$\sqrt{2}\sin \theta =1$.

$\Rightarrow \cos \theta =-\dfrac{1}{\sqrt{2}}$ and

$\Rightarrow \sin \theta =\dfrac{1}{\sqrt{2}}$.

Now, since we have positive value for the sine function and negative for cosine function. Hence, the $\theta $ lies in the second quadrant.

$\Rightarrow \theta =\pi -\dfrac{\pi }{4}$

$\Rightarrow \theta =\dfrac{3\pi }{4}$

Hence, the polar form will be –

$-1+i=r(\cos \theta +i\sin \theta )$

$\Rightarrow -1+i=\sqrt{2}\left[ \cos \dfrac{3\pi }{4}+i\sin \dfrac{3\pi }{4} \right]$.

 

19. Find the real numbers \[x\] and \[y\] if \[(x-iy)(3+5i)\] is the conjugate of \[-6-24i\].

Ans:

We know that the conjugate of the given complex number $z=-6-24i$ will be $\bar{z}=-6+24i$.

Now, let us simplify the expression $(x-iy)(3+5i)$-

Hence, $(x-iy)(3+5i)=3x+5xi-3yi+5y$

$\Rightarrow (3x+5y)+i(5x-3y)$

Now, we will compare the values of the expression with the conjugate of the complex number.

Therefore,

$-6+24i=(3x+5y)+i(5x-3y)$

Thus, we have –

$-6=3x+5y$ and 

$24=5x-3y$.

Now, we will solve both equations for $x$ and $y$.

Hence, we have $51=-17y$

$\Rightarrow y=-3$

After substituting the value in first equation we get –

$\Rightarrow x=3$.

Therefore, the real numbers $x$ and $y$ are $3$ and $-3$.

 

20. If \[\left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|=1\], prove that \[\left| \dfrac{1}{{{z}_{1}}}+\dfrac{1}{{{z}_{2}}} \right|=\left| {{z}_{1}}+{{z}_{2}} \right|\].

Ans:

Given we have \[\left| {{z}_{1}} \right|=\left| {{z}_{2}} \right|=1\]

\[\Rightarrow {{\left| {{z}_{1}} \right|}^{2}}={{\left| {{z}_{2}} \right|}^{2}}=1\]

\[\Rightarrow {{z}_{1}}\overline{{{z}_{1}}}=1\]

\[\Rightarrow \overline{{{z}_{1}}}=\dfrac{1}{{{z}_{1}}}\]

Similarly,

\[{{z}_{2}}\overline{{{z}_{2}}}=1\]

\[\Rightarrow \overline{{{z}_{2}}}=\dfrac{1}{{{z}_{2}}}\]

Therefore, we have –

\[\left| \dfrac{1}{{{z}_{1}}}+\dfrac{1}{{{z}_{2}}} \right|=\left| \overline{{{z}_{1}}}+\overline{{{z}_{2}}} \right|\]

\[\Rightarrow \left| \dfrac{1}{{{z}_{1}}}+\dfrac{1}{{{z}_{2}}} \right|=\left| \overline{{{z}_{1}}+{{z}_{2}}} \right|\]

\[\Rightarrow \left| \dfrac{1}{{{z}_{1}}}+\dfrac{1}{{{z}_{2}}} \right|=\left| {{z}_{1}}+{{z}_{2}} \right|\]

Hence, proved.

 

Long Answer Questions: (6 Marks)

1. If \[z=x+iy\] and \[w=\dfrac{1-iz}{z-i}\]. Show that \[\left| w \right|=1\Rightarrow z\] is purely real.

Ans:

Given we have \[z=x+iy\].

Hence, we have –

\[w=\dfrac{1-i(x+iy)}{x+iy-i}\]

\[\Rightarrow w=\dfrac{1+y-ix}{x+i(y-1)}\]

As, \[\left| w \right|=1\]

Hence,

\[\left| \dfrac{1+y-ix}{x+i(y-1)} \right|=1\]

\[\Rightarrow \dfrac{\left| 1+y-ix \right|}{\left| x+i(y-1) \right|}=1\]

\[\Rightarrow \dfrac{\sqrt{{{(1+y)}^{2}}+{{x}^{2}}}}{\sqrt{{{x}^{2}}+{{(y-1)}^{2}}}}=1\]

\[\Rightarrow {{(1+y)}^{2}}+{{x}^{2}}={{x}^{2}}+{{(y-1)}^{2}}\]

\[\Rightarrow 1+{{y}^{2}}+2y={{y}^{2}}+1-2y\]

\[\Rightarrow 4y=0\]

Hence, \[z=x+0i\] implying that \[z\] is purely real.

 

2. Convert into polar form \[\dfrac{-16}{1+i\sqrt{3}}\].

Ans:

Let us simplify the given expression –

$\dfrac{-16}{1+i\sqrt{3}}=\dfrac{-16}{1+i\sqrt{3}}\times \dfrac{1-i\sqrt{3}}{1-i\sqrt{3}}$

$\Rightarrow \dfrac{-16}{1+i\sqrt{3}}=\dfrac{-16(1-i\sqrt{3})}{1+3}$

$\Rightarrow \dfrac{-16}{1+i\sqrt{3}}=-4+i4\sqrt{3}$

Now, let $r\cos \theta =-4$ and 

$r\sin \theta =4\sqrt{3}$.

Now, let us add the squared value of both the equations.

Therefore,

${{r}^{2}}{{\cos }^{2}}\theta +{{r}^{2}}{{\sin }^{2}}\theta =16+48$

$\Rightarrow {{r}^{2}}({{\cos }^{2}}\theta +{{\sin }^{2}}\theta )=64$

$\Rightarrow r=8$.

Hence, we have –

$8\cos \theta =-4$ and 

$8\sin \theta =4\sqrt{3}$.

$\Rightarrow \cos \theta =-\dfrac{1}{2}$ and

$\Rightarrow \sin \theta =\dfrac{\sqrt{3}}{2}$.

Now, since we have positive values for the sine function and negative for the cosine function. Hence, the $\theta $ lies in the second quadrant.

$\Rightarrow \theta =\pi -\dfrac{\pi }{3}$

$\Rightarrow \theta =\dfrac{2\pi }{3}$

Hence, the polar form will be –

$-4+i4\sqrt{3}=r(\cos \theta +i\sin \theta )$

$\Rightarrow -4+i4\sqrt{3}=8\left[ \cos \dfrac{2\pi }{3}+i\sin \dfrac{2\pi }{3} \right]$.

 

3. Find two numbers such that their sum is \[6\] and the product is \[14\].

Ans:

Let us consider $x$ and $y$ as the two numbers.

Hence, we have –

$x+y=6$ and

$xy=14$.

Therefore,

$x(6-x)=14$

$\Rightarrow 6x-{{x}^{2}}=14$

$\Rightarrow {{x}^{2}}-6x+14=0$

$\Rightarrow x=\dfrac{6\pm \sqrt{36-56}}{2}$

$\Rightarrow x=\dfrac{6\pm \sqrt{20}i}{2}$

$\Rightarrow x=3\pm \sqrt{5}i$

Hence, $y=6-(3\pm \sqrt{5}i)$

$\Rightarrow y=3\mp \sqrt{5}i$

 

4. Convert into polar form \[z=\dfrac{i-1}{\cos \dfrac{\pi }{3}+i\sin \dfrac{\pi }{3}}\].

Ans:

Let us simplify the given expression –

$\dfrac{i-1}{\cos \dfrac{\pi }{3}+i\sin \dfrac{\pi }{3}}=\dfrac{i-1}{\dfrac{1}{2}+i\dfrac{\sqrt{3}}{2}}$

$\Rightarrow \dfrac{i-1}{\cos \dfrac{\pi }{3}+i\sin \dfrac{\pi }{3}}=\dfrac{2(i-1)}{1+i\sqrt{3}}$

$\Rightarrow \dfrac{i-1}{\cos \dfrac{\pi }{3}+i\sin \dfrac{\pi }{3}}=\dfrac{2i-2}{1+i\sqrt{3}}\times \dfrac{1-i\sqrt{3}}{1-i\sqrt{3}}$

$\Rightarrow \dfrac{i-1}{\cos \dfrac{\pi }{3}+i\sin \dfrac{\pi }{3}}=\dfrac{2i+2\sqrt{3}-2+i2\sqrt{3}}{1+3}$

$\Rightarrow \dfrac{i-1}{\cos \dfrac{\pi }{3}+i\sin \dfrac{\pi }{3}}=\dfrac{\sqrt{3}-1+i(\sqrt{3}+1)}{2}$

Now, let \[r\cos \theta =\dfrac{\sqrt{3}-1}{2}\] and 

$r\sin \theta =\dfrac{\sqrt{3}+1}{2}$.

Now, let us add the squared value of both the equations.

Therefore,

${{r}^{2}}{{\cos }^{2}}\theta +{{r}^{2}}{{\sin }^{2}}\theta =\dfrac{{{\left( \sqrt{3}-1 \right)}^{2}}}{4}+\dfrac{{{\left( \sqrt{3}+1 \right)}^{2}}}{4}$

$\Rightarrow {{r}^{2}}({{\cos }^{2}}\theta +{{\sin }^{2}}\theta )=\dfrac{4-2\sqrt{3}+4+2\sqrt{3}}{4}$

$\Rightarrow r=2$.

Hence, we have –

$2\cos \theta =\dfrac{\sqrt{3}-1}{2}$ and 

$2\sin \theta =\dfrac{\sqrt{3}+1}{2}$.

$\Rightarrow \cos \theta =\dfrac{\sqrt{3}-1}{4}$ and

$\Rightarrow \sin \theta =\dfrac{\sqrt{3}+1}{4}$.

Now, since we have positive value for both the functions. Hence, the $\theta $ lies in the first quadrant.

$\Rightarrow \theta =\dfrac{\pi }{4}+\dfrac{\pi }{6}$

$\Rightarrow \theta =\dfrac{5\pi }{12}$

Hence, the polar form will be –

$\dfrac{\sqrt{3}-1+i(\sqrt{3}+1)}{2}=r(\cos \theta +i\sin \theta )$

$\Rightarrow \dfrac{\sqrt{3}-1+i(\sqrt{3}+1)}{2}=2\left[ \cos \dfrac{5\pi }{12}+i\sin \dfrac{5\pi }{12} \right]$.

 

5. If \[\alpha \] and \[\beta \] are different complex numbers with \[\left| \beta  \right|=1\], then find \[\left| \dfrac{\beta -\alpha }{1-\bar{\alpha }\beta } \right|\].

Ans:

Let us assume that $\alpha ={{a}_{1}}+i{{b}_{1}}$ and

$\beta ={{a}_{2}}+i{{b}_{2}}$.

Hence, $\bar{\alpha }={{a}_{1}}-i{{b}_{1}}$

Now, it is given that $\left| \beta  \right|=1$.

Also, $\left| \beta  \right|=\sqrt{{{a}_{2}}^{2}+{{b}_{2}}^{2}}$

$\Rightarrow \sqrt{{{a}_{2}}^{2}+{{b}_{2}}^{2}}=1$

\[\Rightarrow {{a}_{2}}^{2}+{{b}_{2}}^{2}=1\ \ ......\text{(1)}\]

Now, we need to find $\left| \dfrac{\beta -\alpha }{1-\bar{\alpha }\beta } \right|$.

Therefore,

$\left| \dfrac{\beta -\alpha }{1-\bar{\alpha }\beta } \right|=\left| \dfrac{{{a}_{2}}+i{{b}_{2}}-{{a}_{1}}-i{{b}_{1}}}{1-\left( {{a}_{1}}-i{{b}_{1}} \right)\left( {{a}_{2}}+i{{b}_{2}} \right)} \right|$

$\Rightarrow \left| \dfrac{{{a}_{2}}-{{a}_{1}}+i\left( {{b}_{2}}-{{b}_{1}} \right)}{1-\left( {{a}_{1}}{{a}_{2}}+i{{b}_{2}}{{a}_{1}}-i{{b}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}} \right)} \right|$

$\Rightarrow \left| \dfrac{{{a}_{2}}-{{a}_{1}}+i\left( {{b}_{2}}-{{b}_{1}} \right)}{1-{{a}_{1}}{{a}_{2}}-{{b}_{1}}{{b}_{2}}-i\left( {{b}_{2}}{{a}_{1}}-{{b}_{1}}{{a}_{2}} \right)} \right|$

Now, we know that \[\left| \dfrac{{{z}_{1}}}{{{z}_{2}}} \right|=\dfrac{\left| {{z}_{1}} \right|}{\left| {{z}_{2}} \right|}\].

Hence,

$\Rightarrow \dfrac{\left| {{a}_{2}}-{{a}_{1}}+i\left( {{b}_{2}}-{{b}_{1}} \right) \right|}{\left| 1-{{a}_{1}}{{a}_{2}}-{{b}_{1}}{{b}_{2}}-i\left( {{b}_{2}}{{a}_{1}}-{{b}_{1}}{{a}_{2}} \right) \right|}$

$\Rightarrow \dfrac{\sqrt{{{\left( {{a}_{2}}-{{a}_{1}} \right)}^{2}}+{{\left( {{b}_{2}}-{{b}_{1}} \right)}^{2}}}}{\sqrt{{{\left( 1-{{a}_{1}}{{a}_{2}}-{{b}_{1}}{{b}_{2}} \right)}^{2}}+{{\left( {{b}_{2}}{{a}_{1}}-{{b}_{1}}{{a}_{2}} \right)}^{2}}}}$

\[\Rightarrow \dfrac{\sqrt{{{a}_{2}}^{2}+{{a}_{1}}^{2}-2{{a}_{1}}{{a}_{2}}+{{b}_{2}}^{2}+{{b}_{1}}^{2}-2{{b}_{1}}{{b}_{2}}}}{\sqrt{1+{{\left( {{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}} \right)}^{2}}-2\left( {{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}} \right)+{{b}_{2}}^{2}{{a}_{1}}^{2}+{{b}_{1}}^{2}{{a}_{2}}^{2}-2{{a}_{1}}{{a}_{2}}{{b}_{1}}{{b}_{2}}}}\]

From equation \[\text{(1)}\], we have \[{{a}_{2}}^{2}+{{b}_{2}}^{2}=1\].

Therefore,

\[\Rightarrow \dfrac{\sqrt{1+{{a}_{1}}^{2}-2({{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}})+{{b}_{1}}^{2}}}{\sqrt{1+{{a}_{1}}^{2}{{a}_{2}}^{2}+{{b}_{1}}^{2}{{b}_{2}}^{2}+2{{a}_{1}}{{a}_{2}}{{b}_{1}}{{b}_{2}}-2\left( {{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}} \right)+{{b}_{2}}^{2}{{a}_{1}}^{2}+{{b}_{1}}^{2}{{a}_{2}}^{2}-2{{a}_{1}}{{a}_{2}}{{b}_{1}}{{b}_{2}}}}\]

\[\Rightarrow \dfrac{\sqrt{1+{{a}_{1}}^{2}-2({{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}})+{{b}_{1}}^{2}}}{\sqrt{1+{{a}_{1}}^{2}({{a}_{2}}^{2}+{{b}_{2}}^{2})+{{b}_{1}}^{2}({{a}_{2}}^{2}+{{b}_{2}}^{2})-2\left( {{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}} \right)}}\]

\[\Rightarrow \dfrac{\sqrt{1+{{a}_{1}}^{2}+{{b}_{1}}^{2}-2({{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}})}}{\sqrt{1+{{a}_{1}}^{2}+{{b}_{1}}^{2}-2\left( {{a}_{1}}{{a}_{2}}+{{b}_{1}}{{b}_{2}} \right)}}\]

\[\Rightarrow 1\]

Hence, $\left| \dfrac{\beta -\alpha }{1-\bar{\alpha }\beta } \right|=1$.


CBSE Class 11 Maths Chapter-4 Important Questions - Free PDF Download

Class 11 Maths Chapter 4 Important Questions

Vedantu provides important questions for class 11 maths complex numbers. The topic of Chapter 4 of Mathematics is Complex Numbers. The chapter Complex numbers and Quadratic equations class 11 covers how to solve sums based on complex numbers.

Topics that are discussed below are:

  • The real number and an imaginary number

  • Complex number definition

  • Integral powers of iota

  • Purely real and purely imaginary complex numbers.

  • Complex number equality

  • Algebra in complex number – addition, subtraction, multiplication, and division

  • Conjugate of a complex number.

  • Modulus in a complex number

  • Argand plane

  • Polar form

Before knowing the concept of the complex number, one must know the meaning of the real number and imaginary number.

 

Important Definitions

Real Number: A number on the number line that is in the form of a positive, negative, rational, irrational, zero, fraction, integer, etc is called a real number. 

For example: 34, -3, \[\sqrt{7}\], 22/67, 0 

Imaginary Number: The numbers except the real numbers is called an imaginary number. It is the root of a negative number.

For example: \[\sqrt{-67}\], \[\sqrt{-23/92}\], etc.

Complex Number: A complex number is defined as the number that can be expressed in the form of a + ib.

Here, a and b are real numbers and i is iota which will be discussed.

The value of iota is R-1. 

Therefore, z (complex number) = a + ib where a is the real part, and ib is the imaginary part. 

a = Re (z)

b= Im (z)

We can differentiate between the real part and the imaginary part of a complex number with the help of a table given below.

Complex Number

Real Part

Imaginary Part

6+8i

6

8i

-37/2-2i

-37/2

-2i

-34i

0

-34i

8

8

0


The Integral Powers of Lota 

i =  \[\sqrt{-1}\]

i² = -1 

i³ = i².i = (-1).i = -i

i⁴ = i².i² = (-1) (-1) = 1

Now we can generalise it, therefore;

i\[^{4n+1}\] = i

i\[^{4n+2}\] = = -1

i\[^{4n+3}\] = -i

i\[^{4n+4}\] = 1

It can also be generalized in this form,

If n= even integer then, i\[^{n}\] = (-1)\[^{n/2}\]

And, if n= odd integer then, i\[^{n}\] = (-1)\[^{(n-1)/2}\]

 

What is a purely real complex number and a purely imaginary complex number?

If the imaginary part of a complex number is zero, then it is called a purely real complex number.

Im(z) = 0

If the real part of a complex number is zero, then it is called a purely imaginary complex number.

Re(z) = 0

 

Complex Number Equality

Two complex numbers are taken, z\[_{1}\] and z\[_{2}\]

z\[_{1}\] = a\[_{1}\] + ib\[_{1}\]

z\[_{2}\] = a\[_{2}\] + ib\[_{2}\]

If z\[_{1}\] = z\[_{2}\]

i.e. a\[_{1}\] + ib\[_{1}\] = a\[_{2}\] + ib\[_{2}\]

then, a\[_{1}\] = a\[_{2}\] and b\[_{1}\] = b\[_{2}\]

Therefore, Re(z\[_{1}\]) = Re(z\[_{2}\])

And Im(z\[_{1}\]) = Im(z\[_{2}\])

 

Algebra in Complex Number

a. Addition

Let, z\[_{1}\] = a\[_{1}\] + ib\[_{1}\]

and, z\[_{2}\] = a\[_{2}\] + ib\[_{2}\]

Adding both the complex numbers we get,

z\[_{1}\] + z\[_{2}\] = (a\[_{1}\] + ib\[_{1}\]) + (a\[_{2}\] + ib\[_{2}\])

=  (a\[_{1}\] + a\[_{2}\]) + i(b\[_{1}\] + b\[_{2}\])  

Properties:

1. Commutative: z\[_{1}\] + z\[_{2}\] = z\[_{2}\] + z\[_{1}\]  

2. Associative: (z\[_{1}\] + z\[_{2}\]) + z\[_{3}\] = z\[_{1}\] + (z\[_{2}\] + z\[_{3}\])

3. Additive identity: 0+z = z+0 = z

b. Subtraction

Let z\[_{1}\] = a\[_{1}\] + ib\[_{1}\] 

and, z\[_{2}\] = a\[_{2}\] + ib\[_{2}\]  

Subtracting the complex numbers we get:

z\[_{1}\] -  z\[_{2}\] = (a\[_{1}\] + ib\[_{1}\]) - (a\[_{2}\] + ib\[_{2}\])

= (a\[_{1}\] - a\[_{2}\]) + i(b\[_{1}\] - b\[_{2}\])

c. Multiplication 

Let z\[_{1}\] = a\[_{1}\] + ib\[_{1}\]

and, z\[_{2}\] = a\[_{2}\] + ib\[_{2}\] 

Multiplying both the complex numbers, we get

z\[_{1}\] z\[_{2}\]  = (a\[_{1}\] + ib\[_{1}\]) (a\[_{2}\] + ib\[_{2}\])

= (a\[_{1}\]a\[_{2}\] - b\[_{1}\]b\[_{2}\]) + i(a\[_{1}\]b\[_{2}\] + a\[_{2}\]b\[_{1}\])  

Properties:

1. Commutative: z\[_{1}\] z\[_{2}\] = z\[_{2}\] z\[_{1}\]

2. Associative: (z\[_{1}\]z\[_{2}\])z\[_{3}\] = z\[_{1}\](z\[_{2}\] z\[_{3}\])

3. Distributive law: z\[_{1}\](z\[_{2}\] + z\[_{3}\]) =  z\[_{1}\] z\[_{2}\] +  z\[_{1}\] z\[_{3}\]  

3. Multiplicative identity: z.1= 1.z

d. Division

Let z\[_{1}\] = a\[_{1}\] + ib\[_{1}\]

and, z\[_{2}\] = a\[_{2}\] + ib\[_{2}\] 

Dividing z\[_{1}\] by z\[_{2}\] , we get

\[\frac{z_{1}}{z_{2}}\] = \[\frac{(a_{1} + ib_{1})}{(a_{2} + ib_{2})}\]

=  \[\frac{(a_{1}a_{2} - b_{1}b_{2}) + i(a_{1}b_{2} + a_{2}b_{1})}{a_{1}^{2} + a_{2}^{2}}\],  z\[_{2}\] ≠ 0 

 

Solved Examples on Complex Numbers

1. Express (5 – 3i)³ in the form a + ib.

Solution:  We have, (5 – 3i)³ 

= 5³ – 3 × 5²× (3i) + 3 × 5 (3i)² – (3i)³ 

= 125 – 225i – 135 + 27i 

= – 10 – 198i

 

2. Simplify

a) 16i + 10i(3-i)

b) (7i)(5i)

c) 11i + 13i – 2i

Solution: 

a) 16i + 10i(3-i)

= 16i + 10i(3) + 10i (-i)

= 16i +30i – 10 i2

= 46 i – 10 (-1)

= 46i + 10

b) (7i)(5i) = 35  i2 = 35 (-1) = -35

c) 11i + 13i – 2i = 22i

Download important questions for class 11 maths chapter 4

 

Conjugate of a Complex Number

It is denoted by \[\bar{z}\]

\[\bar{z}\] = a - ib

 

Modulus of a Complex Number

If z= a+ib 

Then, ।z। = a\[^{2}\] + b\[^{2}\]

 

Argand Plane and Polar Plane

A plane just like XY plane where the complex number a+ib has the coordinates, a and b is called Argand plane. It is also known as the Gaussian plane. 

Argument of a complex number, z is shown by arg(z)= θ = tan-1(a/b)

arg(z) can also be written as amp(z).                                                   

z is 2nπ + θ is the general value of arg(z).

and the length of OP = \[\sqrt{a^{2}+b^{2}}\]

(Image will be Uploaded Soon)

The principal values of the argument lies in the interval (- π, π].

(i) Given x> 0 and y > 0 then, arg (z) = 0

(ii) Given x < 0 and y> 0 then, arg (z) = π -0

(iii) Given x < 0 and y < 0 then, arg (z) = – (π – θ)

(iv) Given x> 0 and y < 0 then, arg (z) = -θ

 

Polar Form

If z = a + ib is a complex number, then z in polar form can be written as, 

z = |z| (cos θ + i sin θ) where, θ = arg (z)

If the general value of the argument is 0, then the polar form of z is

z = |z|[cos (2nπ + θ) + i sin (2nπ + θ)], where n is an integer.

Why should I study Class 11 Mathematics chapter 4 (Complex numbers and quadratic equations) from Vedantu? Are the important questions for class 11 maths chapter 4 really helpful?

In Vedantu, the notes, important questions, and solutions are prepared by the leading educators who have gained expertise in this field over the years. Vedantu is amongst the most reputed and trustworthy online coaching institutions in India. 

The study material of Algebraic Expression by Vedantu as it covers all the topics that could be asked for in the course of the examination. Start preparing for the exam from Vedantu's Important Questions for Class 11 Maths Chapter 4 without any second thought. The step-by-step approach to any solution allows students to clear up their major doubts. The study material and solutions are prepared in compliance with the existing CBSE guidelines.

Vedantu enrolls students of all merit. After you register in Vedantu, it becomes our responsibility to improve your mathematics core in order to solve the most challenging problems. The regular classes offered by Vedantu enable them to gain an in-depth comprehension of the key concepts. Vedantu gives students the opportunity to learn concepts at their own pace. 

Vedantu allows the student to see studying as a source of fun and not a burden.

The notes are written after a very careful study so that students can understand the topic well enough to see successful outcomes in their examinations. Vedantu also renders professional assistance to students willing to prepare for JEE, NEET, and KVPY examinations.

Practice Questions of CBSE Class 11 Maths Chapter 4

Some Practice Questions of CBSE Class 11 Maths Chapter 4 are as follows.

  1. Find out the solution of the quadratic equation 2x2 + x + 1 = 0.

Answer: (-1 ± √7i) / 4

  1. If z1 and z2 are two complex numbers then prove that Re(z1z2) = Rez1 Rez2– Imz1Imz2

  2. Evaluate i98.

Answer: -1

  1. Calculate the the modulus of [(1+i)/(1-i)] – [(1-i)/(1+i)]

Answer: 3

  1. Write the complex number (9 – i) – ( –4 + i3) in the form a + ib.


Benefits of Referring to Important Questions Provided by Vedantu

We at Vedantu provide you with all the study material that you are searching for in your preparation and examination. Here you will get NCERT Solutions, syllabus, previous year's paper’s solutions for exams, important questions etc.

The syllabus is provided here as per the CBSE guidelines. Solutions of important questions are prepared by highly-experienced teachers.  The benefits or the features of these important questions provided by Vedantu are as follows.

  • The Solution in Easy Language

Important questions for each chapter are prepared by different experts and scholars in the subject matter. The study materials offered by Vedantu are made available to students after rigorous research to ensure that all the given inputs are authentic and to the point.

  • Focus on Fundamental Concepts

NCERT Class 11 chapter-wise important questions not only cover all the topics in the syllabus but also vividly describe all the fundamental and basic concepts required to understand these topics. 

  • Sufficient Material to Practice

Preparation for any exam is incomplete without practice. Students are required to practice questions in order to perform well in examinations. In Vedantu you will get sufficient material to practice with. 

  • Important Topics

Important topics given in the chapter are discussed from the point of view of examination. You can get important topics in each chapter in Vedantu.

  • Better Preparation

Class 11 Maths important questions will resolve the doubts of students quickly and their preparation for examinations will be boosted. With the help of these NCERT Solutions, students will grab complex concepts quickly.


Conclusion

In order to give the students a step-by-step introduction to Complex Numbers and Quadratic Equations, Vedantu experts developed Important Questions of Complex Numbers and Quadratic Equations for Class 11.  The NCERT curriculum was carefully followed in the creation of all the content and solutions for Complex Numbers and Quadratic Equations Class 11 Important Questions, allowing the students to use the content to get ready for the test. 



Related Study Materials for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations


CBSE Class 11 Maths Chapter-wise Important Questions

CBSE Class 11 Maths Chapter-wise Important Questions and Answers cover topics from all 14 chapters, helping students prepare thoroughly by focusing on key topics for easier revision.


Additional Study Materials for Class 11 Maths

FAQs on Important Questions for CBSE Class 11 Maths Chapter 4 - Complex Numbers and Quadratic Equations

1. What are the Applications of Complex Numbers?

The concept of the complex number is used in numerous scientific arenas which include fluid dynamics, quantum mechanics, vibration analysis, signal processing, cartography, electromagnetism, control theory, and many more. Not only these, but the concept of complex numbers also forms the building block of various topics in your higher studies.

2. Define Complex Numbers.

A complex number is defined as the number that can be expressed in the form of a + ib. Here, a and b are real numbers and i is iota.

The value of iota is √-1.

Therefore, z (complex number) = a + ib where a is the real part, and ib is the imaginary part. a = Re (z), b= Im (z). Download important questions for class 11 maths chapter 4 and ace your upcoming exams.