Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Important Questions for CBSE Class 12 Maths Chapter 8 Applications of Integrals 2024-25

ffImage
widget title icon
Latest Updates

widget icon
Start Your Preparation Now :
CBSE Date Sheet 2025 Class 12 Released

CBSE Class 12 Maths Chapter 8 Applications of Integrals Important Questions - Free PDF Download

Important questions for Class 12 Maths Chapter 8 Applications of Integrals are provided on this page in a downloadable PDF format. These important questions will help the students prepare and score well in the CBSE Class 12 Maths exam. The experts designed the questions considering the board's latest syllabus. Also, they are based on the latest exam pattern. 

 

Students are suggested to practice the important questions for all the chapters of the 12th standard Maths provided by Vedantu on its official website and prepare well for the board exam 2024-25. They can refer to the solutions if they get stuck while solving the questions.


We have also provided additional important questions from the examination point of view for Chapter 8  Applications of Integrals Class 12 Maths on this page so that students can revise the chapter by solving these problems instantly. Students can download  Class 12 Maths Chapter 8 important questions free pdf through the link below.

 

Download CBSE Class 12 Maths Important Questions 2024-25 PDF

Also, check CBSE Class 12 Maths Important Questions for other chapters:

CBSE Class 12 Maths Important Questions

Sl.No

Chapter No

Chapter Name

1

Chapter 1

Relations and Functions

2

Chapter 2

Inverse Trigonometric Functions

3

Chapter 3

Matrices

4

Chapter 4

Determinants

5

Chapter 5

Continuity and Differentiability

6

Chapter 6

Application of Derivatives

7

Chapter 7

Integrals

8

Chapter 8

Application of Integrals

9

Chapter 9

Differential Equations

10

Chapter 10

Vector Algebra

11

Chapter 11

Three Dimensional Geometry

12

Chapter 12

Linear Programming

13

Chapter 13

Probability

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
More Free Study Material for Applications of the Integrals
icons
Ncert solutions
589.2k views 15k downloads
icons
Revision notes
icons
Ncert books

Study Important Questions for Class 12 Mathematics Chapter 8 – Application of Integrals

Long Answer Type Questions (6 Marks)

Q.1.Find the area enclosed by a circle \[{x^2} + {y^2} = {a^2}\].

Ans: 

Drawing circle

$ {{x^2} + {y^2} = {a^2}} $

${{\text{ Center }} = (0,0)} $    

(image will be uploaded soon)                                                      

Radius $ = a$

Hence

${{\text{OA}} = {\text{OB}} = {\text{ Radius }} = a} \\ $

$ {\;{\text{A}} = (a,0)} \\ $

${{\text{B}} = (0,a)} $ 

Since, The Circle is Symmetric about X-Axis and Y-Axis.

Area of circle $ = 4 \times $ Area of Region OBAO

$ = 4 \times \int_0^a y dx$

We know that

(image will be uploaded soon)       

  ${{x^2} + {y^2} = {a^2}} $

${{y^2} = {a^2} - {x^2}} $

  ${y =  \pm \sqrt {{a^2} - {x^2}} } $

Since AOBA lies in ${1^{{\text{st }}}}$ Quadrant,

Value of $y$ is positive

$y = \sqrt {{a^2} - {x^2}} $

Now,

${\text{ Area of circle }} = 4 \times \int_0^a {\sqrt {{a^2} - {x^2}} } dx$

$  {{\text{ Using: }}\sqrt {{a^2} - {x^2}} dx = \dfrac{1}{2}\sqrt {{a^2} - {x^2}}  + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}\dfrac{x}{a} + c} $

$  {\quad  = 4\left[ {\dfrac{x}{2}\sqrt {{a^2} - {x^2}}  + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}\dfrac{x}{a}} \right]_0^a} $

$ { = 4\left[ {\left( {\dfrac{a}{2}\sqrt {{a^2} - {a^2}}  + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}\dfrac{a}{a}} \right) - \left( {\dfrac{0}{2}\sqrt {{a^2} - 0}  + \dfrac{{{0^2}}}{2}{{\sin }^{ - 1}}(0)} \right)} \right]} $

$  { = 4\left[ {0 + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}(1) - 0 - 0} \right]} $

$  { = 4 \times \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}(1)} $

$  { = 4 \times \dfrac{{{a^2}}}{2} \times \dfrac{\pi }{2}} $

$  { = \pi {a^2}} $


Q. 2. Find the area of region bounded by:$\left\{ {(x,y):|x - 1| \leqslant y \leqslant \sqrt {25 - {x^2}} } \right\}$

Ans:

We have provided

$\left\{ {(x,y):|x - 1| \leqslant y \leqslant \sqrt {\left. {\left( {25 - {x^2}} \right)} \right\}} } \right.$

Equation of curve is $y = \sqrt {\left( {25 - {x^2}} \right)} $ or ${y^2} + {x^2} = 25$, which is a circle with center at $(0,0)$ and radius 5 

(image will be uploaded soon)       

Equation of line is $y = |x - 1|$ Consider, $y = x - 1$ and $y = \sqrt {25 - {x^2}} $

Eliminating $y$, we get $x - 1 = \sqrt {25 - {x^2}} $

$ \Rightarrow \quad {x^2} + 1 - 2x = 25 - {x^2}$

$ \Rightarrow \quad 2{x^2} - 2x - 24 = 0$

$ \Rightarrow \quad {x^2} - x - 12 = 0$

$ \Rightarrow \quad (x - 4)(x + 3) = 0$

$ \Rightarrow \quad x =  - 3,4$

The Required Area is

${ = \int_{ - 3}^4 {\sqrt {25 - {x^2}} } dx - \int_{ - 1}^1 {( - x + 1)} dx - \int_1^2 {(x - 1)} dx} $

$  { = \left[ {\dfrac{x}{2}\sqrt {25 - {x^2}}  + \dfrac{{25}}{2}{{\sin }^{ - 1}}\dfrac{x}{{\sqrt {25} }}} \right]_{ - 3}^4 - \left[ { - \dfrac{{{x^2}}}{2} + x} \right]_{ - 1}^1 - \left[ {\dfrac{{{x^2}}}{2} - x} \right]_1^2} $

$ = \left( {6 + \dfrac{{25}}{2}{{\sin }^{ - 1}}\dfrac{4}{{\sqrt {25} }}} \right) + 6 - \dfrac{{25}}{2}{\sin ^{ - 1}}\left( { - \dfrac{3}{{\sqrt {25} }}} \right) - \left( {\dfrac{{ - 1}}{2} + 1 + \dfrac{1}{2} + 1} \right) - \left( {2 - 2 - \dfrac{1}{2} + 1} \right)$

${ = \dfrac{{25}}{2}\left( {{{\sin }^{ - 1}}\dfrac{4}{{\sqrt 5 }} + {{\sin }^{ - 1}}\dfrac{3}{{\sqrt 5 }}} \right) + 2 - 2 - \dfrac{1}{2}} \\ $

${ = \dfrac{{25}}{2}{{\sin }^{ - 1}}\left[ {\dfrac{4}{{\sqrt 5 }}\sqrt {1 - \dfrac{1}{5}}  + \dfrac{3}{{\sqrt 5 }}\sqrt {1 - \dfrac{4}{5}} } \right] - \dfrac{1}{2}} $

$ { = \dfrac{{25}}{2}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{4}{5} + \dfrac{1}{5}} \right)} \right] - \dfrac{1}{2}} \\ $

$ { = \dfrac{{25}}{2}{{\sin }^{ - 1}}(1) - \dfrac{1}{2}} \\ $ 

$ { = \left( {\dfrac{{25\pi }}{4} - \dfrac{1}{2}} \right){\text{ sq}}{\text{. units }}} $


Q.3. Find the area enclosed by the ellipse${\text{  }}\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1$.

Ans: 

We have to find Area Enclosed by ellipse

Since Ellipse is symmetrical about both $x$ -axis and $y$ -axis

$\therefore $ Area of ellipse $ = 4 \times $ Area of OAB

$ = 4 \times \int_0^a y dx$

(image will be uploaded soon)       

We know that,

$ {\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1} \\ $

$ {\dfrac{{{y^2}}}{{{b^2}}} = 1 - \dfrac{{{x^2}}}{{{a^2}}}} $

$ {\dfrac{{{y^2}}}{{{b^2}}} = \dfrac{{{a^2} - {x^2}}}{{{a^2}}}} \\ $

$ {{y^2} = \dfrac{{{b^2}}}{{{a^2}}}\left( {{a^2} - {x^2}} \right)} \\ $

$ {y =  \pm \sqrt {\dfrac{{{b^2}}}{{{a^2}}}\left( {{a^2} - {x^2}} \right)} } \\ $ 

$ {y =  \pm \dfrac{b}{a}\sqrt {\left( {{a^2} - {x^2}} \right)} } $

(image will be uploaded soon)       

Since ${\text{OAB}}$ is in ${1^{{\text{st }}}}$ quadrant,

value of $y$ is positive

$\therefore \quad y = \dfrac{b}{a}\sqrt {{a^2} - {x^2}} $

${\text{Area of ellipse }} = 4 \times \int_0^a y  \cdot dx$

$ { = 4\int_0^a {\dfrac{b}{a}} \sqrt {{a^2} - {x^2}} dx} \\ $

$ { = \dfrac{{4b}}{a}\int_0^a {\sqrt {{a^2} - {x^2}} } dx} $

$ {{\text{ It is of form }}} \\ $

$ {\sqrt {{a^2} - {x^2}} dx = \dfrac{1}{2}x\sqrt {{a^2} - {x^2}}  + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}\dfrac{x}{a} + c} $

$ { = \dfrac{{4b}}{a}\left[ {\dfrac{x}{2}\sqrt {{a^2} - {x^2}}  + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}\dfrac{x}{a}} \right]_0^a} \\ $

$ { = \dfrac{{4b}}{a}\left[ {\left( {\dfrac{a}{2}\sqrt {{a^2} - {a^2}}  + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}\dfrac{a}{a}} \right) - \left( {\dfrac{0}{2}\sqrt {{a^2} - 0}  - \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}(0)} \right)} \right]} \\ $

$ { = \dfrac{{4b}}{a}\left[ {0 + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}(1) - 0 - 0} \right]} $ 

$ { = \dfrac{{4b}}{a} \times \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}(1)} \\ $

$ { = 2ab \times {{\sin }^{ - 1}}(1)} \\ $

$ { = 2ab \times \dfrac{\pi }{2}} \\ $

$ { = \pi ab} \\ $

$ {\therefore {\text{ Required Area }} = \pi ab{\text{ square units }}} $

 

Q. 4. Find the area of region in the first quadrant enclosed by x–axis, the line y = x and the circle \[{x^2} + {y^2} = 32\].

Ans:

Equation of Given Circle is: -

$ {{x^2} + {y^2} = 32} \\ $

$ {{x^2} + {y^2} = 16 \times 2} \\ $

$ {{x^2} + {y^2} = {4^2} \times 2} \\ $

$ {{x^2} + {y^2} = {{(4\sqrt 2 )}^2}} $

(image will be uploaded soon)       

Let point where line and circle intersect be point ${\text{M}}$

Required Area = Area of shaded region

= Area OMA

 First, we find Point ${\text{M}}$

Point $M$ is intersection of line and circle

We know that

$y = x$

Putting this in Equation of Circle, we get

$ {{x^2} + {y^2} = 32} \\ $

$ {{x^2} + {x^2} = 32} \\ $

$ {2{x^2} = 32} \\ $

$ {{x^2} = 16} \\ $ 

$ {\therefore \quad x =  \pm 4} $ 

When x =4 

Y = x =4

So, points are (4, 4)

 When x = -4

Y = x = -4

So, points are (-4, -4)

As, Point M is in 1st Quadrant 

M = (4, 4)

(image will be uploaded soon)       

$\therefore \quad {\text{ Required Area}} = {\text{ Area OMP}} + {\text{ Area PMA}} = \int_0^4 {{y_1}} dx + \int_4^{4\sqrt 2 } {{y_2}} dx$

$ {{x^2} + {y^2} = {{(4\sqrt 2 )}^2}} \\ $

$ {{y^2} = {{(4\sqrt 2 )}^2} - {x^2}} \\ $

$ {y =  \pm \sqrt {{{(4\sqrt 2 )}^2} - {x^2}} } $ 

As Required Area is in first Quadrant

$\therefore {y_2} = \sqrt {{{(4\sqrt 2 )}^2} - {x^2}} $

$ {\therefore {\text{ Required Area }} = \int_0^4 x dx + \int_4^{4\sqrt 2 } {\sqrt {{{(4\sqrt 2 )}^2} - {x^2}} } dx}\\ $

$ {{\text{ Taking }}{{\text{I}}_1}{\text{ i}}{\text{.e}}{\text{. }}}\\ $

$ { = \int_0^4 x  \cdot dx} \\ $

$ { = \left[ {\dfrac{{{x^2}}}{2}} \right]_0^4} \\ $

$ { = \dfrac{{{{(4)}^2} - 0}}{2}} \\ $

$ { = \dfrac{{16}}{2}} \\ $

$ { = 8} $ 

Now solving ${{\text{I}}_2}$

${{\text{I}}_2} = \int_4^{4\sqrt 2 } {\sqrt {{{(4\sqrt 2 )}^2} - {x^2}} } dx$

It is of form

$\int {\sqrt {{a^2} - {x^2}} } dx = \dfrac{1}{2}x\sqrt {{a^2} - {x^2}}  + \dfrac{{{a^2}}}{2}{\sin ^{ - 1}}\dfrac{x}{a} + c$

 Replacing a by 4√2, we get

${{\text{I}}_2} = \left[ {\dfrac{x}{2}\sqrt {{{(4\sqrt 2 )}^2} - {x^2}}  + \dfrac{{{{(4\sqrt 2 )}^2}}}{2}{{\sin }^{ - 1}}\dfrac{x}{{4\sqrt 2 }}} \right]_4^{4\sqrt 2 }$

$ = \dfrac{{4\sqrt 2 }}{2}\sqrt {{{(4\sqrt 2 )}^2} - {{(4\sqrt 2 )}^2}}  + \dfrac{{{{(4\sqrt 2 )}^2}}}{2}{\sin ^{ - 1}}\dfrac{{4\sqrt 2 }}{{4\sqrt 2 }}$

$ - \dfrac{4}{2}\sqrt {{{(4\sqrt 2 )}^2} - {{(4)}^2}}  - \dfrac{{{{(4\sqrt 2 )}^2}}}{2}{\sin ^{ - 1}}\dfrac{4}{{4\sqrt 2 }}$

$ = 0 + \dfrac{{16 \times 2}}{2}{\sin ^{ - 1}}(1) - 2\sqrt {32 - 16}  - \dfrac{{16 \times 2}}{2}{\sin ^{ - 1}}\left( {\dfrac{1}{{\sqrt 2 }}} \right)$

$ { = 16{{\sin }^{ - 1}}(1) - 2\sqrt {16}  - 16{{\sin }^{ - 1}}\left( {\dfrac{1}{{\sqrt 2 }}} \right)} \\ $

$ { = 16\left[ {{{\sin }^{ - 1}}(1) - {{\sin }^{ - 1}}\left( {\dfrac{1}{{\sqrt 2 }}} \right)} \right] - 8} \\ $

$ { = 16\left[ {\dfrac{\pi }{2} - \dfrac{\pi }{4}} \right] - 8} \\ $

$ { = 16\left[ {\dfrac{{4\pi  - 2\pi }}{{4 \times 2}}} \right] - 8} \\ $ 

$ { = \dfrac{{16}}{8}[2\pi ] - 8} \\ $ 

$ { = 2[2\pi ] - 8} \\ $

$ { = 4\pi  - 8} $ 

Putting Value of i1 and i2 in (1)

Area = 8 + 4π – 8

          =4π

Therefore, Required Area is 4π Sq. unit.

 

Q.5. Find the area of region \[\{ \left( {{\mathbf{x}},{\text{ }}{\mathbf{y}}} \right):{\text{ }}{\mathbf{y}}{\text{ }}{\mathbf{2}} \leqslant {\mathbf{4x}},{\text{ }}{\mathbf{4x}}{\text{ }}{\mathbf{2}}{\text{ }} + {\text{ }}{\mathbf{4y}}{\text{ }}{\mathbf{2}} \leqslant {\mathbf{9}}\} .\]

Ans:

x-coordinate of point of intersection is x = 1/2 

(image will be uploaded soon)       

$ {{\text{ Required area }}} \\ $

$ { = 2\left( {\int_0^1 2 \sqrt x dx + \int_{\dfrac{1}{2}}^3 {\sqrt {\dfrac{9}{4} + {x^2}} } dx} \right)} \\ $

 $ { = 2\left[ {\dfrac{4}{3}{x^{3/2}}^{\dfrac{1}{2}} + \dfrac{x}{2}\sqrt {\dfrac{9}{4} - {x^2}}  + \left. {\dfrac{9}{8}\sin \dfrac{{2x}}{3}} \right|_2^3} \right]} \\ $

$ { = \dfrac{{\sqrt 2 }}{6} + \dfrac{9}{4}\left( {\dfrac{\pi }{2} - \sin \dfrac{1}{3}} \right){\text{ or }}\dfrac{{\sqrt 2 }}{6} + \dfrac{9}{4}{{\cos }^{ - 1}}\dfrac{1}{3}} $

 

Q. 6. Prove that the curve \[{\mathbf{y}}{\text{ }} = {\text{ }}{{\mathbf{x}}^{\mathbf{2}}}\] and, \[{\mathbf{x}}{\text{ }} = {\text{ }}{{\mathbf{y}}^{\mathbf{2}}}\]divide the square bounded by x = 0, y = 0, x = 1, y = 1 into three equal parts.

Ans:

Let OABC be the square bounded by x = 0, y=0, x=1, y=1.

(image will be uploaded soon)       

 $A(OABC){\text{ }} = 1 \times 1 = 1{\text{ sq}}{\text{. units }}$

$ {{\text{ From, }}y = {x^2}{\text{ and x = }}{{\text{y}}^2}} \\ $

$ {x = {{({x^2})}^2}} $

${x^4} = x$

$ {{x^4} - x = 0} \\ $

$x(x^{3}-1)=0$

$x=0, x=\pm 1$

 Point of intersection of the two parabolas is (0, 0) and (1,1).

 ${\text{ Area of part III }} = \int_0^1 y dx\left( {{\text{ parabola }}{x^2} = y} \right)$

$ { = \int_0^1 {\dfrac{{{x^2}}}{{}}} dx = \left[ {\dfrac{{{x^3}}}{3}} \right]_0^1} \\ $

$  { = \dfrac{1}{3}{\text{ sq}}{\text{. units }}} $

${\text{ Area of }}I = {\text{ Area of square  -  Area of II and III }}$

$ { = 1 - \int_0^1 {\sqrt x } dx} \\ $

$ { = 1 - \dfrac{1}{3}\left[ {{x^{3/2}}} \right]_0^1} \\ $

$ { = 1 - \dfrac{1}{3}{\text{ sq}}{\text{. units }}} \\ $

$ { = \dfrac{2}{3}{\text{ sq}}{\text{. units }}} $

Area of II = Area of square - Area of I - Area of III

$ { = 1 - \dfrac{1}{3} - \dfrac{1}{3}{\text{ sq}}{\text{. units }}} \\ $

$  { = \dfrac{1}{3}{\text{ sq}}{\text{. units }}} $ 

The two curves divide the square into three equal parts.

 

Q.7. Find the area of the smaller region bounded by the ellipse \[\dfrac{{{x^2}}}{a} + \dfrac{{{y^2}}}{b} = 1\]

and straight-line \[\dfrac{x}{a} + \dfrac{y}{b} = 1\]

Ans:

The given ellipse is x2/a2 + y2/b2 = 1 and 

the line is x/a + y/b = 1.

(image will be uploaded soon)       

The sketch is as— The shaded region is the required area

$ {\therefore \quad \operatorname{ar} (ABCA) = \int_0^a {\left( {{y_1} - {y_2}} \right)} dx} \\ $

$ { = \int_0^a {(y{\text{ of the ellipse }})} dx - \int_0^a {(y{\text{ of the line }})} dx} \\ $

$ { = \int_0^a {\dfrac{b}{a}} \sqrt {{a^2} - {x^2}} dx - \int_0^a {\dfrac{{b(a - x)}}{a}} dx} $

$ { = \dfrac{b}{a}\left[ {\dfrac{{x\sqrt {{a^2} - {x^2}} }}{2} + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}\dfrac{x}{a}} \right]_0^a - \dfrac{b}{a}\left[ {ax - \dfrac{{{x^2}}}{2}} \right]_0^a} \\ $

$ { = \dfrac{b}{a}\left[ {0 + \dfrac{{{a^2}}}{2}{{\sin }^{ - 1}}\dfrac{a}{a} - 0} \right] - \dfrac{b}{a}\left( {{a^2} - \dfrac{{{a^2}}}{2} - 0} \right)} \\ $

$ { = \dfrac{{ab}}{2} \cdot {{\sin }^{ - 1}}1 - \dfrac{b}{a} \times \dfrac{{{a^2}}}{2} = \left( {\dfrac{{\pi ab}}{4} - \dfrac{{ab}}{2}} \right)} $

${\text{ So, The required area }} = \left( {\dfrac{{\pi ab}}{4} - \dfrac{{ab}}{2}} \right){\text{ sq}}{\text{. units }}$

 

Q.8. Find the common area bounded by the circles \[{{\mathbf{x}}^{\mathbf{2}}} + {\text{ }}{{\mathbf{y}}^{\mathbf{2}}} = {\text{ }}{\mathbf{4}}\] and \[{\left( {{\mathbf{x}}{\text{ }}--{\text{ }}{\mathbf{2}}} \right)^{\mathbf{2}}} + {\text{ }}{{\mathbf{y}}^{\mathbf{2}}} = {\text{ }}{\mathbf{4}}.\]

Ans:

Equations of given circles

\[{x^2} + {y^2} = 4..........(1)\]

\[{(x - 2)^2} + {y^2} = 4\]

Centre of the circle from equation –(i) is at origin (0, 0) and radius is 2 units.

Centre of the circle of equation (ii) is (2, 0) and at the x axis and radius is 2 units.

 Required enclosed area is shown by shaded part in figure

(image will be uploaded soon)       

 Solving equation (i) and (ii) 

Obtained intersecting points of circles are p (1, √3) and Q (1 – √3)

 Out of two circles one symmetric about x axis

 ∴ Required area = 2(Area OPACO) = 2 [Area OPCO + Area CPAC] 

= 2[Area OPCO (part of circle (x – 2)2 + y2 = 4) + Area CPAC (part of circle x2 + y2 = 4) 

 ∴ Required Area = 2 ∫ y dx (for circle (x – 2)2 + y2 = 4) + ∫ y dx (for circle x2 + y2 = 4)

 $ { = 2\left[ {\int_0^1 {\sqrt {4 - {{(x - 2)}^2}} } dx + \int_1^2 {\sqrt {4 - {x^2}} } dx} \right]} \\ $

$ { = 2\left[ {\left\{ {\left( {\dfrac{{x - 2}}{2}} \right)\sqrt {4 - {{(x - 2)}^2}}  + \dfrac{4}{2}{{\sin }^{ - 1}}\dfrac{{(x - 2)}}{2}} \right\}_0^1} \right.} \\ $

$ {\left. { + \left\{ {\dfrac{x}{2}\sqrt {4 - {x^2}}  + \dfrac{4}{2}{{\sin }^{ - 1}}\dfrac{x}{2}} \right\}_1^2} \right]} $

$ { = 2\left\{ {\dfrac{{1 - 2}}{2}\sqrt {4 - {{(1 - 2)}^2}}  + \dfrac{4}{2}{{\sin }^{ - 1}}\dfrac{{1 - 2}}{2}} \right\}} \\ $

$ { - \left\{ {\left( {\dfrac{{0 - 2}}{2}} \right)\sqrt {4 - {{(0 - 2)}^2}}  + \dfrac{4}{2}{{\sin }^{ - 1}}\dfrac{{0 - 2}}{2}} \right\}} \\ $

$ { + \left\{ {\dfrac{2}{2}\sqrt {4 - 4}  + \dfrac{4}{2}{{\sin }^{ - 1}}\dfrac{2}{2}} \right\}} \\ $ 

$ {\left. {\quad  - \left\{ {\dfrac{{\sqrt 3 }}{2}\sqrt {4 - 3}  + \dfrac{4}{2}{{\sin }^{ - 1}}\dfrac{{\sqrt 1 }}{2}} \right\}} \right]} $

$ = 2\left[ { - \dfrac{1}{2}\sqrt {4 + 1}  + \dfrac{4}{2}{{\sin }^{ - 1}}\left( {\dfrac{{ - 1}}{2}} \right)} \right. + \sqrt {4 - 4}  - \dfrac{4}{2}{\sin ^{ - 1}}( - 1)\left. { + \dfrac{4}{2}{{\sin }^{ - 1}}1 - \dfrac{{\sqrt 3 }}{2} - \dfrac{4}{2}{{\sin }^{ - 1}}\dfrac{1}{2}} \right]$

$ = 2\left[ { - \dfrac{1}{2} \times \sqrt 3  - \dfrac{4}{2}{{\sin }^{ - 1}}\dfrac{1}{2} + } \right.\dfrac{4}{2}{\sin ^{ - 1}}1\left. { + \dfrac{4}{2}{{\sin }^{ - 1}}1 - \dfrac{{\sqrt 3 }}{2} - \dfrac{4}{2}{{\sin }^{ - 1}}\dfrac{1}{2}} \right]$

$ { = 2\left[ { - \dfrac{{\sqrt 3 }}{2} - \dfrac{4}{2} \times \dfrac{\pi }{6} + \dfrac{4}{2} \times \dfrac{\pi }{2} + \dfrac{4}{2} \times \dfrac{\pi }{2} - \dfrac{{\sqrt 3 }}{2} - \dfrac{4}{2} \times \dfrac{\pi }{6}} \right]} \\ $

$ { = 2\left[ { - \sqrt 3  - \dfrac{\pi }{3} + \pi  + \pi  - \dfrac{\pi }{3}} \right]} $

$ { = 2\left[ { - \sqrt 3  - \dfrac{{2\pi }}{3} + 2\pi } \right] = 2\left[ {\dfrac{{6\pi  - 2\pi }}{3} - \sqrt 3 } \right]} $

$ { = 2\left[ {\dfrac{{4\pi }}{3} - \sqrt 3 } \right] = \left( {\dfrac{{8\pi }}{3} - 2\sqrt 3 } \right){\text{ sq}}{\text{. unit}}{\text{. }}} $

 

Q.9. Using integration, find the area of the region bounded by the triangle whose vertices are

  1. (–1, 0), (1, 3) and (3, 2)

Ans:

We need line eq: for line AB, BC and AC

(image will be uploaded soon)       

points $( - 1,0)$ and $(1,3)$

eq: is $\dfrac{{y - 0}}{{3 - 0}} = \dfrac{{x - ( - 1)}}{{1 - ( - 1)}}$ eq: of line by 2-point form $\dfrac{{y - {y_1}}}{{{y_2} - {y_1}}} = \dfrac{{x - {x_1}}}{{{x_2} - {x_1}}}$

$ \Rightarrow \dfrac{y}{3} = \dfrac{{x + 1}}{2}$

$ \Rightarrow 2{\text{y}} = 3{\text{x}} + 3$

$ \Rightarrow y = \dfrac{{3x}}{2} + \dfrac{3}{2}$

(image will be uploaded soon)       

so, for line BC points $(1,3)$ and $(3,2)$

so, for line AC points $( - 1,0)$ and $(3,2)$

eq: is $\dfrac{{y - 0}}{{2 - 0}} = \dfrac{{x - ( - 1)}}{{3 - ( - 1)}}$

$ \Rightarrow \dfrac{y}{2} = \dfrac{{x + 1}}{4}$

$ \Rightarrow y = \dfrac{x}{2} + \dfrac{1}{2}$

Required area is shaded area ⇒ [Area under line AB from x

 = -1 to x = 1 + Area under BC from x = 1 to x 

= 3 - Area under AC from x = -1 to x = 3]

$ { \Rightarrow \int_{ - 1}^1 {\left( {\dfrac{{3x}}{2} + \dfrac{3}{2}} \right)} dx + \int_1^3 {\left( {\dfrac{{ - x}}{2} + \dfrac{7}{2}} \right)} dx - \int_{ - 1}^3 {\left( {\dfrac{x}{2} + \dfrac{1}{2}} \right)} dx} \\ $

$ {\left. {\left. {\left. {\left. {\left. {\left. { \Rightarrow \dfrac{3}{2} \times \dfrac{{{x^2}}}{2}} \right]_{ - 1}^1 + \dfrac{{3x}}{2}} \right]_{ - 1}^1 + \dfrac{{ - 1}}{2} \times \dfrac{{{x^2}}}{2}} \right]_1^3 + \dfrac{{7x}}{2}} \right]_1^3 - \dfrac{{{x^2}}}{{2 \times 2}}} \right]_{ - 1}^3 - \dfrac{{1x}}{2}} \right]_{ - 1}^3} $ 

 $ { \ Rightarrow \left( {\left( {\dfrac{3}{2} \times \dfrac{1}{2}} \right) - \left( {\dfrac{3}{2} \times \dfrac{1}{2}} \right)} \right) + \left( {\left( {\dfrac{{3 \times 1}}{2}} \right) - \left( {\dfrac{{3 \times ( - 1)}}{2}} \right)} \right)} \\ $

$ { + \left( {\left( {\dfrac{{ - 1}}{2} \times \dfrac{9}{2}} \right) - \left( {\dfrac{{ - 1}}{2} \times \dfrac{{{1^2}}}{2}} \right)} \right) + \left( {\dfrac{{21}}{2} - \dfrac{7}{2}} \right)} \\ $

$ { - \left( {\dfrac{9}{4} - \dfrac{1}{4}} \right) - \left( {\dfrac{3}{2} - \left( {\dfrac{{ - 1}}{2}} \right)} \right)} $

$ { \Rightarrow \left( {\dfrac{3}{4} - \dfrac{3}{4}} \right) + \left( {\dfrac{3}{2} - \left( {\dfrac{{ - 3}}{2}} \right)} \right) + \left( {\left( {\dfrac{{ - 9}}{4}} \right)} \right.} \\ $

$ {\left. { - \left( {\dfrac{{ - 1}}{4}} \right)} \right) + \left( {\dfrac{{14}}{2}} \right) - \left( {\dfrac{8}{4}} \right) - \left( {\dfrac{3}{2} + \dfrac{1}{2}} \right)} $ 

$ { = (0) + \left( {\dfrac{6}{2}} \right) + \left( {\dfrac{{ - 8}}{4}} \right) + \left( {\dfrac{{14}}{2}} \right) - \left( {\dfrac{8}{4}} \right) - \left( {\dfrac{4}{2}} \right)} $

$ { = 0 + 3 - 2 + 7 - 2 - 2 = 4{\text{ sq}}{\text{. units}}{\text{. }}} $

  1. (–2, 2) (0, 5) and (3, 2)

Ans: We have to find the area of the triangle whose vertices are A (– 2,2), B (0, 5), C (3, 2)

$ {{\text{ The equation of }}AB{\text{ , }}} \\ $

$ {{\text{y}} = {{\text{y}}_1} = \left( {\dfrac{{{{\text{y}}_2} - {{\text{y}}_1}}}{{{{\text{x}}_2} - {{\text{x}}_1}}}} \right)\left( {{\text{x}} - {{\text{x}}_1}} \right)} \\ $

$ {y - 2 = \left( {\dfrac{{5 - 2}}{{0 + 2}}} \right)(x + 2)} \\ $

$ {y - 2 = \dfrac{3}{2}(x + 2)} \\ $

$ {Y = \dfrac{3}{2}x + 5 \ldots {\text{ }}...{\text{ (i) }}} $

The equation of BC,

$y-5=(\frac{2-5}{3-0})(x-0)$

$ { = \dfrac{{ - 3}}{3}(x - 0)} \\ $

$ {y - 5 =  - x} \\ $

$ {Y = 5 - x \ldots {\text{ (ii) }}} \\ $

$ {{\text{ The equation of }}AC{\text{ , }}} \\ $

$ {{\text{y}} - 2 = \left( {\dfrac{{2 - 2}}{{3 + 2}}} \right)({\text{x}} + 2)} \\ $

$ {y - 2 = 0} \\ $ 

$ {{\text{y}} = 2 \ldots {\text{ (iii) }}} $ 

Now the required area $(A) = $

((Area between line A B and $x$ -axis) - (Area between line A C and $x$ - axis) from $x =  - 1$ to $x = 0)$

$ + [$ (Area between line ${\text{BC}}$ and ${\text{x}}$ -axis) - (Area between line ${\text{AC}}$ and ${\text{x}}$ -axis) from ${\text{x}} = 0$ to $x = 3$ ]

 Say, Area $A = {A_1} + {A_2}$

 $A_{1}=\int_{-2}^{0}[(\frac{3x}{2}+5)]dx$

$ { = \int_{ - 2}^0 {\left[ {\dfrac{{3x}}{2} + 5 - 2} \right]} dx} \\ $

$ { = \int_{ - 2}^0 {\left( {\dfrac{{3x}}{2} + 3} \right)} dx} \\ $

$ { = 3\left( {\dfrac{{{x^2}}}{4} + x} \right)_{ - 2}^0} \\ $

$ { = 3\left[ {(0) - \left( {\dfrac{4}{4} - 2} \right)} \right]} \\ $

$ { = 3} $ 

$ {{\text{ And, }}{A_2} = \int_0^3 {\left( {{y_2} - {y_3}} \right)} dx} \\  $ 

$ { = \int_0^3 {\left[ {(5 - x) - 2} \right]} dx} \\ $

$ { = \int_0^3 {\left[ {5 - x - 2} \right]} dx} \\ $

$ { = \int_0^3 {\left( {3 - x} \right)} dx} \\ $

$ { = \left( {3x - \dfrac{{{x^2}}}{2}} \right)_0^3} \\ $ 

$ { = \left[ {9 - \dfrac{9}{2}} \right] = \dfrac{9}{2}} $ 

So, the enclosed area of the triangle is 

\[3 + \dfrac{9}{2} = \dfrac{{15}}{2}\] sq. Units. 

 

Q.10. Using integration, find the area bounded by the lines.

(I) \[{\mathbf{x}}{\text{ }} + {\text{ }}{\mathbf{2y}}{\text{ }} = {\text{ }}{\mathbf{2}},{\text{ }}{\mathbf{y}}{\text{ }}--{\text{ }}{\mathbf{x}}{\text{ }} = {\text{ }}{\mathbf{1}}{\text{ }}{\mathbf{and}}{\text{ }}{\mathbf{2x}}{\text{ }} + {\text{ }}{\mathbf{y}}{\text{ }}--{\text{ }}{\mathbf{7}}{\text{ }} = {\text{ }}{\mathbf{0}}\]

Ans:

Given, x + 2y = 2 ...(I) 

 y – x = 1 ...(ii)

 2x + y = 7 ...(iii) 

 On plotting these lines, we have

(image will be uploaded soon)       

 Area of required region

$ = \int_{ - 1}^3 {\dfrac{{7 - y}}{2}} dy - \int_{ - 1}^1 {(2 - 2y)} dy - \int_1^3 {(y - 1)} dy$

$ = \dfrac{1}{2}\left[ {7y - \dfrac{{{y^2}}}{2}} \right]_{ - 1}^3 - \left[ {2y - {y^2}} \right]_{ - 1}^1 - \left[ {\dfrac{{{y^2}}}{2} - y} \right]_1^3$

$ = \dfrac{1}{2}\left( {21 - \dfrac{9}{2} + 7 + \dfrac{1}{2}} \right) - (2 - 1 + 2 + 1) - \left( {\dfrac{9}{2} - 3 - \dfrac{1}{2} + 1} \right)$

$ = 12 - 4 - 2 = 6$ sq. units

(ii) \[{\mathbf{y}}{\text{ }} = {\text{ }}{\mathbf{4x}}{\text{ }} + {\text{ }}{\mathbf{5}},{\text{ }}{\mathbf{y}}{\text{ }} = {\text{ }}{\mathbf{5}}{\text{ }}--{\text{ }}{\mathbf{x}}{\text{ }}{\mathbf{and}}{\text{ }}{\mathbf{4y}}{\text{ }}--{\text{ }}{\mathbf{x}}{\text{ }} = {\text{ }}{\mathbf{5}}.\]

Ans:

We have lines

$ {y = 4x + 5} \\ $ 

$ {y = 5 - x} \\ $

$ {4y = x + 5} $

 Solving(i)and(ii),we get point of intersection$(0,5)$Solving(ii)and(iii),we get point of intersection(3,2)

Solving(i)and(iii),we get point of intersection$(-1,1) 

These lines are plotted on coordinate plane as shown in the following figure.

(image will be uploaded soon)       

From the figure, area of the shaded region

$ {A = \int_{ - 1}^0 {(4x + 5)} dx + \int_0^3 {(5 - x)} dx - \int_{ - 1}^3 {\dfrac{{x + 5}}{4}} dx} $

$ { = \left[ {\dfrac{{4{x^2}}}{2} + 5x} \right]_{ - 1}^0 + \left[ {5x - \dfrac{{{x^2}}}{2}} \right]_0^3 - \dfrac{1}{4}\left[ {\dfrac{{{x^2}}}{2} + 5x} \right]_{ - 1}^3} \\ $

$ { = [0 - 2 + 5] + \left[ {15 - \dfrac{9}{2} - 0} \right] - \dfrac{1}{4}\left[ {\dfrac{9}{2} + 15 - \dfrac{1}{2} + 5} \right]} \\ $

$ { = 3 + \dfrac{{21}}{2} + \dfrac{1}{4} \cdot 24 = \dfrac{{15}}{2}{\text{ sq}}{\text{. units }}} $

 

Q. 11. Find the area of the region \[\{ \left( {{\mathbf{x}},{\text{ }}{\mathbf{y}}} \right):{\text{ }}{\mathbf{x}}{\text{ }}{\mathbf{2}}{\text{ }} + {\text{ }}{\mathbf{y}}{\text{ }}{\mathbf{2}} \leqslant {\mathbf{1}} \leqslant {\mathbf{x}}{\text{ }} + {\text{ }}{\mathbf{y}}\} .\]

Ans:

Given curves are 

${(x, y): {x_2} + {y_2}, ≤ 1 ≤ x + y}$.

(image will be uploaded soon)       

$ {{\text{ Hence, the required area }}} \\ $

$ { = \int_0^1 {(C - L)} dx} \\ $

$ { = \int_0^1 {\left( {\sqrt {1 - {x^2}}  - (1 - x)} \right)} dx} \\ $

$ { = \left( {\dfrac{{x\sqrt {1 - {x^2}} }}{2} + \dfrac{1}{2}{{\sin }^{ - 1}}\left( {\dfrac{x}{2}} \right) - x + \dfrac{{{x^2}}}{2}} \right)_0^1} \\ $

$ { = \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\left( {\dfrac{1}{2}} \right) - 1 + \dfrac{1}{2}} \right)} \\ $ 

$ { = \left( {\dfrac{1}{2}{{\sin }^{ - 1}}\left( {\dfrac{1}{2}} \right) - \dfrac{1}{2}} \right)} \\ $

$ { = \dfrac{1}{2}\left( {\dfrac{\pi }{6} - 1} \right){\text{ sq}}{\text{.u}}{\text{. }}} $


Q. 12. Find the area of the region bounded by \[{\mathbf{y}}{\text{ }} = {\text{ }}\left| {{\mathbf{x}}{\text{ }}--{\text{ }}{\mathbf{1}}} \right|{\text{ }}{\mathbf{and}}{\text{ }}{\mathbf{y}}{\text{ }} = {\text{ }}{\mathbf{1}}.\]

Ans:

Area between two Curve 

If we have two functions .Area between two curves are

(image will be uploaded soon)       

Required Area = ½ × Base × Height

                          =1/2 ×2×1

                               =1

(image will be uploaded soon)       

 

Q.13. Find the area enclosed by the curve \[{\mathbf{y}}{\text{ }} = {\text{ }}{\mathbf{sin}}{\text{ }}{\mathbf{x}}\]

between x = 0 and x =\[\dfrac{{3\pi }}{2}\] and x-axis.

Ans:

(image will be uploaded soon)       

Area required = Area of OAB + Area of BC

$  {{\text{ Area OAB }}} \\ $

$  { = \int_0^\pi  y dx} \\ $

$  {y \to \sin x} \\ $

$  { = \int_0^\pi  {\sin } xdx} \\ $

$  { = [ - \cos x]_0^\pi } \\ $

$  { =  - [\cos \pi  - \cos 0]} \\ $

$  { =  - [ - 1 - 1]} \\ $

$  { =  - [ - 2]} \\ $

$  { = 2} $

Area BC

$ = \int_\pi ^{2\pi } y dx$

$ = \int_\pi ^{2\pi } {\sin } xdx$

$ = [ - \cos x]_\pi ^{\dfrac{{3\pi }}{2}}$

$ =  - [\cos \dfrac{{3\pi }}{2} - \cos \pi ]$

$ =  - [0 - ( - 1)]$

$ =  - 1$

Since area cannot be negative,

Area ${\text{BC}} = 1$

$  {{\text{ Hence, }}}\\ $

$  {{\text{ Area Required }}},{ = {\text{ Area }}OAB + {\text{ Area }}BC} \\ $

$  { = 2 + 1} \\ $

$  { = 3} $ 


Q. 14. Find the area bounded by semi-circle \[{\mathbf{y}} = {\mathbf{25}} - {{\mathbf{x}}^{\mathbf{2}}}\]and x-axis.

Ans:

Let the Area bounded By Semi-circle

(image will be uploaded soon)       

$  {\therefore A = \quad 2xy}\\ $

$  {\qquad {\text{ }}\therefore \dfrac{{dA}}{{dx}}},{ = 2x \cdot \dfrac{1}{{2\sqrt {25 - {x^2}} }} \cdot ( - 2x) + \sqrt {25 - {x^2}} },{ \cdot 2} \\ $

$  { = 2x\sqrt {25 - {x^2}} }\\ $

$  { = \dfrac{{2\left( {25 - {x^2}} \right) - 2{x^2}}}{{\sqrt {25 - {x^2}} }}}\\ $

$  { = \dfrac{{dA}}{{dx}} = },{0,{\text{ when }}x = y = \dfrac{{5\sqrt 2 }}{2}} $

$  {{\text{ By the First Derivative Test, the inscribed rectangle of maximum area has vertices }}} \\ $

$  {\left( { \pm \dfrac{{5\sqrt 2 }}{2},0} \right),{\text{ and }}\left( { \pm \dfrac{{5\sqrt 2 }}{2},\dfrac{{5\sqrt 2 }}{2}} \right)} \\ $

$  {\therefore {\text{ The length }} = 5\sqrt 2 ,\quad {\text{ the width }} = \dfrac{{5\sqrt 2 }}{2}} $

${\text{ The length }} = {\mathbf{5}}\sqrt {\mathbf{2}} ,\quad {\text{ the width }} = \dfrac{{{\mathbf{5}}\sqrt {\mathbf{2}} }}{{\mathbf{2}}}$

 

Q. 15. Find area of region given by \[\{ \left( {{\mathbf{x}},{\text{ }}{\mathbf{y}}} \right):{\text{ }}{{\mathbf{x}}^{\mathbf{2}}}\; \leqslant {\mathbf{y}} \leqslant \left| {\mathbf{x}} \right|\} .\]

Ans:

The required area is bounded between two curves $y = x^2$ and $y = |x|$.  

Both of these curves are symmetric about the y-axis and shaded region in the fig. shows the region whose area is required.

 Therefore, the required area

(image will be uploaded soon)       

 $A = 2 \times $ Area of the region ${R_1}$

Now, to find the point of intersection of the curves $y = |x|$ and $y = {x^2}$, we solve them simultaneously.

Clearly, the region ${R_1}$ is in the first quadrant, where $x > 0$,

$\therefore |x| = x$ or $\quad y = x$  ...(i)

 $y = {x^2}$

and

Solving these two equations, we get

$x = {x^2}$

or either $x = 0$ or $x = 1$

The limits are, when $x = 0,y = 0$ and when $x = 1,y = 1$. So, the points of intersection of the curves are ${\text{O}}(0,0)$ and ${\text{A}}(1,1)$.

Now, required Area $ = 2 \times $ area of line region ${R_1}$

(Tex translation failed) of the line $y = x$

$ - \left( y \right.$ of the parabola $\left. {\left. {y = {x^2}} \right)} \right]dx$

$ = 2\int_0^1 {\left( {x - {x^2}} \right)} dx = 2\left[ {\dfrac{{{x^2}}}{2} - \dfrac{{{x^3}}}{3}} \right]_0^1$

$ = 2\left[ {\dfrac{1}{2} - \dfrac{1}{3}} \right] = \dfrac{1}{3}$ Sq. unit

 

Q.16. Find area of smaller region bounded by ellipse \[\dfrac{{{x^2}}}{9} + \dfrac{{{y^2}}}{4} = 1\]

 and straight line \[{\mathbf{2x}}{\text{ }} + {\text{ }}{\mathbf{3y}}{\text{ }} = {\text{ }}{\mathbf{6}}.\]

Ans:

(image will be uploaded soon)       

 $ {{\text{ Area of shaded region }}} \\ $

 $ { = \int_0^3 {\left\{ {\dfrac{2}{3}\sqrt {9 - {x^2}}  - \dfrac{2}{3}(3 - x)} \right\}} dx} \\ $

$ { = \dfrac{2}{3}\left[ {\dfrac{x}{2}\sqrt {9 - {x^2}}  + \dfrac{9}{2}{{\sin }^{ - 1}}\dfrac{x}{3} + \dfrac{{{{(3 - x)}^2}}}{2}} \right]_0^3} \\ $

$ { = \dfrac{2}{3}\left[ {\left( {0 + \dfrac{9}{2} \cdot \dfrac{\pi }{2} + 0} \right) - \left( {0 + 0 + \dfrac{9}{2}} \right)} \right]} \\ $

$ { = \dfrac{2}{3}\left( {9\dfrac{\pi }{4} - \dfrac{9}{2}} \right)} \\ $

$ { = 3\left( {\dfrac{\pi }{2} - 1} \right){\text{sq}} \cdot {\text{ unit}}{\text{. }}} $

 

Q.17. Find the area of region bounded by the curve \[{{\mathbf{x}}^2}{\text{ }} = {\text{ }}{\mathbf{4y}}\]and line \[{\mathbf{x}}{\text{ }} = {\text{ }}{\mathbf{4y}}{\text{ }}--{\text{ }}{\mathbf{2}}.\]

Ans:

(image will be uploaded soon)       

Points of intersection are (2, 1) and (-1, 1/4)

Required Area of region (ΔOABO)

$  { = \int_{ - 1}^2 {\dfrac{{x + 2}}{4}} dx - \int_{ - 1}^2 {\dfrac{{{x^2}}}{4}} dx} \\ $

$  { = \dfrac{1}{4}\left[ {\dfrac{{{{(x + 2)}^2}}}{2} - \dfrac{{{x^3}}}{3}} \right]_{ - 1}^2} \\ $

$  { = \dfrac{1}{4}\left[ {\dfrac{{16}}{3} - \dfrac{5}{6}} \right] = \dfrac{{27}}{{24}}{\text{ sq}}{\text{.units }}} \\ $

$  { = \dfrac{9}{8}{\text{ squnits }}} $ 


Q. 18. Using integration find the area of region in first quadrant enclosed by x-axis, the line \[{\mathbf{x}} = \surd {\mathbf{3y}}\]and the circle \[{{\mathbf{x}}^{\mathbf{2}}} + {\text{ }}{{\mathbf{y}}^{\mathbf{2}}} = {\text{ }}{\mathbf{4}}.\]

Ans:

Given Equation of circle

(image will be uploaded soon)       

$x^{2}+y^{2}=4$

$  {{x^2} + {y^2} = {{(2)}^2}} $

$\therefore $ Radius $r = 2$

So, point $A$ is $(2,0)$

and point ${\text{B}}$ is $(0,2)$

 Let line $x = \sqrt 3 y$ intersect the circle at point $C$

Therefore, we have to find Area of AOC

 Finding point ${\text{C}}$

(image will be uploaded soon)       

We know that

$x = \sqrt 3 y$

Putting value of ${\text{x}}$ in equation of circle

${x^2} + {y^2} = 4$

$ {{{(\sqrt 3 y)}^2} + {y^2} = 4} \\ $

$ {3{y^2} + {y^2} = 4} \\ $

$ {4{y^2} = 4} \\ $

$ {{y^2} = 1} \\ $

$ {\therefore \quad y =  \pm 1} $

Now, finding value of $x$

$  {{\text{ When }}y = 1} \\ $ 

$  {x = \sqrt 3 y} \\ $

$  {x = \sqrt 3  \times 1} \\ $

$ {x = \sqrt 3 } $

$ {{\text{ When }}y =  - 1} \\ $

$ {x = \sqrt 3 y} \\ $

$ {x = \sqrt 3  \times  - 1} \\ $

$ {x =  - \sqrt 3 } $

$ {{\text{ Since point C is in}}{{\text{ }}^{{\text{st}}}}{\text{ quadrant }}} \\ $ 

$ {\therefore {\text{C is }}(\sqrt 3 ,1)} $

(image will be uploaded soon)       

Area OAC

(image will be uploaded soon)       

Area of $OAC = $ Area $OCX + $ Area XCA

 Area OCX

Area ${\text{OCX}} = \int_0^{\sqrt 3 } y dx$

$y \to $ Equation of line

Now,

(image will be uploaded soon)       

$  {x = \sqrt 3 y} \\ $

$  {y = \dfrac{x}{{\sqrt 3 }}} $ 

$  {{\text{ Therefore, }}} \\ $

$  {{\text{ Area OCX}} = \int_0^{\sqrt 3 } y dx} \\ $

$  { = \int_0^{\sqrt 3 } {\dfrac{x}{{\sqrt 3 }}} dx} \\ $

$  { = \dfrac{1}{{\sqrt 3 }}\int_0^{\sqrt 3 } x dx} \\ $

$  { = \dfrac{1}{{\sqrt 3 }}\left[ {\dfrac{{{x^2}}}{2}} \right]_0^{\sqrt 3 }} \\ $

$  { = \dfrac{1}{{2\sqrt 3 }}\left[ {{x^2}} \right]_0^{\sqrt 3 }} \\ $

$  { = \dfrac{1}{{2\sqrt 3 }}\left[ {{{(\sqrt 3 )}^2} - {{(0)}^2}} \right]} $ 

$\frac{1}{2\sqrt{3}}[3]$

$=\frac{\sqrt{3}}{2}$

Area XCA

Area $ \times CA = \int_{\sqrt 3 }^2 y dx$

$y \to $ Equation of circle

Now,

$ {{x^2} + {y^2} = 4} \\ $

$  {{y^2} = 4 - {x^2}} \\ $

$  {y =  \pm \sqrt {4 - {x^2}} } $ 

Since XCA is in ${1^{{\text{st }}}}$ Quadrant,

$ {{\text{ Value of }}y{\text{ will be positive }}} \\ $

$  {\therefore y = \sqrt {4 - {x^2}} }\\ $

$  {{\text{ Area  XCA}}},{ = \int_{\sqrt 3 }^2 {\sqrt {4 - {x^2}} } dx} \\ $ 

$  { = \int_{\sqrt 3 }^2 {\sqrt {{{(2)}^2} - {x^2}} } dx} $

It is of form

$\sqrt {{a^2} - {x^2}} dx = \dfrac{1}{2}x\sqrt {{a^2} - {x^2}}  + \dfrac{{{a^2}}}{2}{\sin ^{ - 1}}\dfrac{x}{a} + c$

Replacing a by 2, we get

$ = \left[ {\dfrac{1}{2}x\sqrt {{{(2)}^2} - {x^2}}  + \dfrac{{{{(2)}^2}}}{2}{{\sin }^{ - 1}}\dfrac{x}{2}} \right]_{\sqrt 3 }^2$

$ = \left[ {\dfrac{1}{2}x\sqrt {4 - {x^2}}  + 2{{\sin }^{ - 1}}\dfrac{x}{2}} \right]_{\sqrt 3 }^2$

$ = \dfrac{1}{2}(2)\sqrt {4 - {2^2}}  + 2{\sin ^{ - 1}}\dfrac{2}{2} - \dfrac{1}{2}(\sqrt 3 )\sqrt {4 - {{(\sqrt 3 )}^2}}  - 2{\sin ^{ - 1}}\dfrac{{\sqrt 3 }}{2}$

$ { = 0 + 2{{\sin }^{ - 1}}(1) - \dfrac{{\sqrt 3 }}{2}\sqrt {4 - 3}  - 2{{\sin }^{ - 1}}\dfrac{{\sqrt 3 }}{2}} \\ $

$ { = 2{{\sin }^{ - 1}}(1) - \dfrac{{\sqrt 3 }}{2} - 2{{\sin }^{ - 1}}\dfrac{{\sqrt 3 }}{2}} \\ $

$ { = \dfrac{{ - \sqrt 3 }}{2} + 2\left[ {{{\sin }^{ - 1}}(1) - {{\sin }^{ - 1}}\dfrac{{\sqrt 3 }}{2}} \right]} \\ $

$ { = \dfrac{{ - \sqrt 3 }}{2} + 2\left[ {\dfrac{\pi }{2} - \dfrac{\pi }{3}} \right]} \\ $

$ { = \dfrac{{ - \sqrt 3 }}{2} + 2\left[ {\dfrac{\pi }{6}} \right]} \\ $

$ { = \dfrac{{ - \sqrt 3 }}{2} + \dfrac{\pi }{3}} $

$ {{\text{ Therefore, }}} \\ $

$ {{\text{ Area of OAC}} = {\text{ Area OCX}} + {\text{ Area XCA }}} $

$ = \dfrac{{\sqrt 3 }}{2} - \dfrac{{\sqrt 3 }}{2} + \dfrac{\pi }{3}$

$ = \dfrac{\pi }{3}$ square units

$\therefore $ Required Area $ = \dfrac{\pi }{3}$ square units

 

Q.19. Find smaller of two areas bounded by the curve \[{\mathbf{y}}{\text{ }} = {\text{ }}\left| {\mathbf{x}} \right|{\text{ }}{\mathbf{and}}{\text{ }}{{\mathbf{x}}^{\mathbf{2}}} + {\text{ }}{{\mathbf{y}}^{\mathbf{2}}} = {\text{ }}{\mathbf{8}}\].

Ans:

Let the Parabola be:

(image will be uploaded soon)       

$  {{\text{ The required area }}} \\ $

$  { = \int_{ - 2}^2 {\sqrt {8 - {x^2}} } dx - \int_{ - 2}^0 {} xdx + \int_0^2 x dx} \\ $

$  { = 2\int_0^2 {\sqrt {8 - {x^2}} } dx - \left[ {\dfrac{{{x^2}}}{2}} \right]_{ - 2}^0 - \left[ {\dfrac{{{x^2}}}{2}} \right]_0^2} \\ $

$  { = 2\left[ {\dfrac{x}{2}\sqrt {8 - {x^2}}  + \dfrac{8}{2}{{\sin }^{ - 1}}\dfrac{x}{{2\sqrt 2 }}} \right]_0^2 - \dfrac{4}{2} - 2} \\ $

$  { = 2\left[ {2 + 4 \cdot \dfrac{\pi }{4}} \right] - 4 = 2\pi sq.unit} $ 

 

Q. 20. Find the area lying above x-axis and included between the \[{\mathbf{circle}}{\text{ }}{{\mathbf{x}}^{\mathbf{2}}} + {\text{ }}{{\mathbf{y}}^{\mathbf{2}}} = {\text{ }}{\mathbf{8x}}\]and the parabola \[{{\mathbf{y}}^{\mathbf{2}}} = {\text{ }}{\mathbf{4x}}.\]

Ans:

We have, given equations

${x^2} + {y^2} = 8x \ldots .$ (i)

and ${y^2} = 4x\quad  \ldots  \ldots  \ldots .$ (ii)

 

Equation (1) can be written as

${(x - 4)^2} + {y^2} = {(4)^2}$

 

So, equation (I) represents a circle with center $(4,0)$ and radius 4. 

Again, clearly equation (ii) represents parabola with vertex $(0,0)$ and axis as $x$ -axis. 

The curve (i) and (ii) are shown in figure and the required region is shaded. On solving equation (i) and (ii) we have points of intersection $0(0,0)$ and $A(4,4),C(4, - 4)$

 

 Now, we have to find the area of region bounded

(image will be uploaded soon)       

by $(i)$ and $(ii){\text{ }}$ above $x$ -axis. So required region is OBAO.

 Now, area of OBAO is

$A{\text{ }} = \int_0^4 {\left( {\sqrt {8x - {x^2}}  - \sqrt {4x} } \right)} dx = \int_0^4 {\left( {\sqrt {{{(4)}^2} - {{(x - 4)}^2}}  - 2\sqrt x } \right)} dx$

$ = \left[ {\dfrac{{(x - 4)}}{2}\sqrt {{{(4)}^2} - {{(x - 4)}^2}}  + \dfrac{{16}}{2}{{\sin }^{ - 1}}\dfrac{{(x - 4)}}{4} - 2 \times \dfrac{{2{x^{3/2}}}}{3}} \right]_0^4$

$  { = \left[ {8{{\sin }^{ - 1}}0 - \dfrac{4}{3}{{(4)}^{\dfrac{3}{2}}}} \right] - \left[ {8{{\sin }^{ - 1}}( - 1) - 0} \right]} \\ $

$  { = \left( {8 \times 0 - \dfrac{4}{3} \times 8} \right) - \left( {8 \times  - \dfrac{\pi }{2}} \right)} \\ $

$  { =  - \dfrac{{32}}{3} + 4\pi  = \left( {4\pi  - \dfrac{{32}}{3}} \right){\text{ sq}}{\text{.units }}} $

 

Q. 21. Using integration, find the area enclosed by the curve \[{\mathbf{y}}{\text{ }} = {\text{ }}{\mathbf{cos}}{\text{ }}{\mathbf{x}},{\text{ }}{\mathbf{y}}{\text{ }} = {\text{ }}{\mathbf{sin}}{\text{ }}{\mathbf{x}}\]

and x-axis in the interval (0, π/2).

Ans: The area bounded by the curves are in the chart below:

(image will be uploaded soon)       

 The previous version of my response had the area corresponding to ${\text{C}}$. However, after reading the question again, I guess the required area $ = {\text{A}} + {\text{B}}$

$AreaA = \int_0^{\dfrac{\pi }{4}} {(\cos x - \sin x)} .dx = [\sin x + \cos x]_0^{\dfrac{\pi }{4}}$

$A = \left[ {\sin \dfrac{\pi }{4} + \cos \dfrac{\pi }{4} - \sin 0 - \cos 0} \right] = \left[ {\dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} - 0 - 1} \right] = [\sqrt 2  - 1]$

$\quad  = \int_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}} {(\sin x - \cos x)}  \cdot dx = {[ - \cos x - \sin x]_{{{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}}}}}$

$B = \left[ { - \cos \dfrac{\pi }{2} - \sin \dfrac{\pi }{2} + \cos \dfrac{\pi }{4} + \sin \dfrac{\pi }{4}} \right] = \left[ { - 0 - 1 + \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} + 0 + 1} \right] = [\sqrt 2 $

${\text{ Required Area }} = A + B = [\sqrt 2  - 1] + [\sqrt 2  - 1] = 2[\sqrt 2  - 1]$

Area C: (retained for academic exercise, if someone interested)

The required area $ = [y = \sin x]_0^{\dfrac{\pi }{4}} + [y = \cos x]_{\dfrac{\pi }{4}}^{\dfrac{\pi }{2}}$

Due to the symmetry of $\sin x$ and $\cos x$ functions between $\left( {0,\dfrac{\pi }{4}} \right)$ and $\left( {\dfrac{\pi }{4},\dfrac{\pi }{2}} \right)$ :

$ = 2*\int_0^{\dfrac{\pi }{4}} {\sin } x.dx = 2*[ - \cos x]_0^{\dfrac{\pi }{4}}$

$ = 2*\left[ { - \cos \dfrac{\pi }{4} + \cos 0} \right] = 2*\left[ {1 - \dfrac{1}{{\sqrt 2 }}} \right] = 2 - \sqrt 2 $

 

Q. 22. Sketch the graph \[{\mathbf{y}}{\text{ }} = {\text{ }}\left| {{\mathbf{x}}{\text{ }}--{\text{ }}{\mathbf{5}}} \right|\]. Evaluate \[\int\limits_0^6 {|x - 5|} dx\].

Ans:

We have,

$y = |x - 5|$ intersect $x = 0$ and $x = 1$ at $(0,5)$ and $(1,4)$

Now,

$y = |x - 5|$

$ =  - (x - 5)$ For all $x \in (0,1)$

Integration represents the area enclosed by the graph from $x = 0$ to $x = 1$

(image will be uploaded soon)       

$  {A = \int_0^6 | y|dx} \\ $

$  { = \int_0^6 | x - 5|dx} \\ $

$ { = \int_0^6  -  (x - 5)dx} \\ $

$ { =  - \int_0^6 {(x - 5)} dx} \\$ 

$ { =  - \left[ {\dfrac{{{x^2}}}{2} - 5x} \right]_0^6} \\ $

$ { =  - \left[ {\left( {\dfrac{{36}}{2} - 30} \right) - (0 - 0)} \right]} \\ $

$  { = 12{\text{sq}} \cdot {\text{ units }}} $


Q.23. Find area enclosed between the curves\[,{\text{ }}{\mathbf{y}}{\text{ }} = {\text{ }}{\mathbf{4x}}{\text{ }}{\mathbf{and}}{\text{ }}{{\mathbf{x}}^{\mathbf{2}}} = {\text{ }}{\mathbf{6y}}\]

Ans: Here, ${x^2} = 6y$ is a parabola

And,

$y = 4x$ is a line

which intersects the parabola at points $A$ and $B$

We need to find Area of shaded region

First, we find Points A and B

(image will be uploaded soon)       

Finding points $A$ and $B$

Points $A{\text{ }}B$ are the intersection of curve and line

Putting in equation of curve, we get

$  {{x^2} = 6y} \\ $

$  {{{(\dfrac{y}{4})}^2} = 4y} \\ $

$  {\dfrac{{{y^{^2}}}}{{16}} = 4y} \\ $

$  {{y^2} - 64y = 0} \\ $

$  {{y^2} = 64y} \\ $

$  {y = 64} \\ $

$  {} $

y=64, y=0

 For y = 64 

$  {x = \dfrac{y}{4}} \\ $

$  {x = \dfrac{{64}}{4}} \\$ 

$  {x = 16} \\ $

$  {{\text{ So, point is }}\left( {16,64} \right)} $

For $y = 0$

$x = \dfrac{y}{4}$

$x = 0$

So, point is $(0,0)$ 

Point  is in 1stQuadrant (16,64)

 

Q.24.Using integration, find the area of the following region: 

$  {\left\{ {(x,y):|x - 1| \leqslant y \leqslant \sqrt {5 - {x^2}} } \right\}} $

Ans:

We have provided

$\left\{ {(x,y):|x - 1| \leqslant y \leqslant \sqrt {\left. {\left( {5 - {x^2}} \right)} \right\}} } \right.$

Equation of curve is $y = \sqrt {\left( {5 - {x^2}} \right)} $ or ${y^2} + {x^2} = 5$, which is a circle with center at $(0,0)$ 

and radius $5/2$.

(image will be uploaded soon)       

Equation of line is $y = |x - 1|$ Consider, $y = x - 1$ and $y = \sqrt {5 - {x^2}} $

Eliminating $y$, we get $x - 1 = \sqrt {5 - {x^2}} $

$ \Rightarrow \quad {x^2} + 1 - 2x = 5 - {x^2}$

$ \Rightarrow \quad 2{x^2} - 2x - 4 = 0$

$ \Rightarrow \quad {x^2} - x - 2 = 0$

$ \Rightarrow \quad (x - 2)(x + 1) = 0$

$ \Rightarrow \quad x = 2, - 1$

 

The Required Area is

 $ { = \int_{ - 1}^2 {\sqrt {5 - {x^2}} } dx - \int_{ - 1}^1 {( - x + 1)} dx - \int_1^2 {(x - 1)} dx} \\ $

 $ { = \left[ {\dfrac{x}{2}\sqrt {5 - {x^2}}  + \dfrac{5}{2}{{\sin }^{ - 1}}\dfrac{x}{{\sqrt 5 }}} \right]_{ - 1}^2 - \left[ { - \dfrac{{{x^2}}}{2} + x} \right]_{ - 1}^1 - \left[ {\dfrac{{{x^2}}}{2} - x} \right]_1^2} $

$ = \left( {1 + \dfrac{5}{2}{{\sin }^{ - 1}}\dfrac{2}{{\sqrt 5 }}} \right) + 1 - \dfrac{5}{2}{\sin ^{ - 1}}\left( { - \dfrac{1}{{\sqrt 5 }}} \right) - \left( {\dfrac{{ - 1}}{2} + 1 + \dfrac{1}{2} + 1} \right) - \left( {2 - 2 - \dfrac{1}{2} + 1} \right)$

$ { = \dfrac{5}{2}\left( {{{\sin }^{ - 1}}\dfrac{2}{{\sqrt 5 }} + {{\sin }^{ - 1}}\dfrac{1}{{\sqrt 5 }}} \right) + 2 - 2 - \dfrac{1}{2}} \\ $

$ { = \dfrac{5}{2}{{\sin }^{ - 1}}\left[ {\dfrac{2}{{\sqrt 5 }}\sqrt {1 - \dfrac{1}{5}}  + \dfrac{1}{{\sqrt 5 }}\sqrt {1 - \dfrac{4}{5}} } \right] - \dfrac{1}{2}} $

$ { = \dfrac{5}{2}\left[ {{{\sin }^{ - 1}}\left( {\dfrac{4}{5} + \dfrac{1}{5}} \right)} \right] - \dfrac{1}{2}} \\ $

$ { = \dfrac{5}{2}{{\sin }^{ - 1}}(1) - \dfrac{1}{2}} \\ $

$ { = \left( {\dfrac{{5\pi }}{4} - \dfrac{1}{2}} \right){\text{ sq}}{\text{. units }}} $


Key Features of Important Questions For Class 12 Maths Chapter 8 Application of Integrals

Students can get the following benefits when practising important questions for Class 12 Maths Chapter 8

  1. These important questions are prepared by Maths experts.

  2. They contain well-structured content.

  3. Questions are solved with the help of diagrams wherever required.

  4. Students can enhance time management skills while solving questions.

  5. Practising questions will give students an overall idea of how to present the answers in exams.

 

Extra Practice Questions For Class 12 Maths Chapter 8 - Application of Integrals

  1. Determine the region's area bounded by x =√k and x = k.

  2. Determine the region's area bounded x2 = 4y, y = 2, y = 4, and the y – axis in the first quadrant.

  3. Find the area bounded by the curve y = 4 – x2 and the lines y = 0 and y = 3.

  4. Determine the area including between the parabolas y2 = 4ax and x2 = 4by.

  5. What area is bounded by the parabola y2 = 4x and x2 = 4y?

  6. Find the area bounded by the parabola y2 = 4ax. Also, find its latus rectum and the x-axis.

  7. Determine the area of the curve y = sin x between 0 and π.

  8. Calculate the area of the smaller part of the circle x2 + y2 = a2 cut off by the line x = a/√2.

  9. Find the areas of the region: {(x,y): x2 + y2 ≤ 1 ≤ x + 4}

  10. Find the area bounded by the curves y = cos x, y= 0, and x = |1|.


Keep visiting Vedantu to get important questions for all the subjects of Class 12th. Along with the important questions, students are also provided NCERT Solutions for Class 12th, Class 12th Revision Notes and CBSE Sample Papers for Class 12th papers to help them more effectively prepare for the CBSE Class 12th board exams.


Important Related Links for CBSE Class 12 Maths 

FAQs on Important Questions for CBSE Class 12 Maths Chapter 8 Applications of Integrals 2024-25

1. How do CBSE Class 12th Maths Chapter 8 important questions help students?

Subject experts at Vedantiu have designed the Important Questions for Class 12 Maths Chapter 8 after conducting extensive research on each topic covered in the chapter. Every solution to the questions is explained comprehensively to help students score well in the board exams and other competitive exams like IIT JEE. It also helps students while working on assignments without any difficulty.

2. What are the ideal resources to use when studying Chapter 8 of Class 12 Maths?

NCERT textbooks are the most crucial resource while studying Chapter 8 of Class 12 Maths. Most questions are directly asked from here. You must practice the NCERT questions to the point you can solve them in your sleep. You can use Vedantu's NCERT Solutions available at vedantu for this. You must also use Vedantu's revision notes, important questions, sample papers, and previous years' question papers for practice.  If you thoroughly practice from the above-mentioned resources, you will master the chapter. You can also use a couple of reference books if you like.

3. Suggest a study plan for Chapter 8 from Class 12 Maths?

An efficient study plan can help you prepare to score high in your Math board exams.

  1. Familiarize yourself with this chapter weightage at the start of the academic year and build your study plan accordingly.

  2. Devote some time daily to practice the NCERT questions of this chapter.

  3. Allot 2 hours weekly from the start to practice important questions, sample papers, and previous years' questions papers.

  4. Allot time to prepare this chapter's notes.

  5. Keep the study plan practical and follow it religiously.

4. Is Chapter 8 “Application of Integrals” of Class 12 Maths important?

Chapter 8, "Application of Integrals," from Class 12 Mathematics is important. The chapter is significant from the perspective of CBSE Board exams as well as other competitive exams.  If we look at Class 12 Board examination question papers over the years, this chapter can roughly carry 6-8 marks. Moreover, the chapter is not overly difficult. If your foundational concepts of integrals are strong, you can easily score full marks in questions from this chapter in the board exams. Practice is key to mastering this chapter.

5. How to practice CBSE Class 12 Maths Chapter 8 Important Questions?

Below are a few points that students must remember while solving  CBSE Class 12 Maths Chapter 8 important questions.

  • Students should not look for the answers given in the pdf while practising these questions during revision..

  • They should allocate a time duration before starting to solve the questions.

  • Once students have finished, they must evaluate their answers first by themselves. Further, they can refer to the solution in the pdf if they cannot solve it accurately even after trying many times.

  • They should practice the questions several times if they could not solve them on the first attempt.