Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Lattice Enthalpy of an Ionic Solid

Reviewed by:
ffImage
hightlight icon
highlight icon
highlight icon
share icon
copy icon
SearchIcon

Introduction of Lattice Enthalpy

A chemical reaction is a process that involves a rearrangement of the molecular or ionic structure of a substance. In this article, we shall discuss ionic solids and what Lattice Enthalpy is. The crystalline structure of ionic compounds is strong and rigid. It takes enough energy to break their bond. Ionic compounds are solids that have high boiling and melting points.  The strong bonds between oppositely charged ions lock them into a network or lattice within the crystalline structure. Lattice Enthalpy is the change when this structure is formed or is broken. 


What is Lattice Enthalpy?

In simple words, Lattice Enthalpy is the change in Enthalpy connected with the formation of one mole of an ionic compound from its gaseous ions, other things remaining standard. It is the energy required to entirely separate one mole of an ionic compound into gaseous ions. We can even say that Lattice Enthalpy is a measure of the strength of an ionic compound. Lattice is a strong network, mesh, or web and enthalpy is the heat content, total heat, or a thermodynamic quantity equal to the internal energy of a system and the product of its volume and pressure. 


We can describe Lattice Enthalpy in the following two ways:

  1. We can say that the enthalpy is the change when 1 mole of sodium chloride (or any other substance) was formed from its scattered gaseous ions. In the case of sodium chloride case, that would be -787kJ mol-1.   

  2. The second definition describes it as the enthalpy when 1 mole of sodium chloride (or any other substance) is broken up to form its scattered gaseous ions. In the case of sodium chloride case, it would be +787kJ mol-1.  

So, the breaking up and the formation both get a reference as Lattice Enthalpy. 


What are the Factors of Lattice Enthalpy?  

As you know by now, Lattice Enthalpy is the change in enthalpy associated with the formation of one mole of an ionic compound from its gaseous ions under normal conditions. One of the key Lattice Enthalpy questions is the two principal factors that affect it. They are -


Charges on the Ions - Sodium chloride (NaCl) and magnesium oxide (MgO) have the same arrangement of ions in the lattice. However, their lattice enthalpies differ. The Lattice Enthalpy of MgO is greater than that of NaCl. The reason is in MgO, two +ions attract two –ions, whereas, in NaCl, the attraction is between one +ion and one –ion.   


The Radius of the Ions - the Lattice Enthalpy of MgO is increased in relation to NaCl as the magnesium ions are smaller than sodium ions. It means that the ions are close together in the lattice of MgO, and this increases the strength of the attractions.  Note that oxide ions are always smaller than chloride ions.


Can Lattice Enthalpy be Positive or Negative? 

As mentioned earlier, Lattice Enthalpy is about forming up as well as breaking down.  If we talk about the requirement of energy to split up the lattice into scattered gaseous ions- it is breaking down. In NaCl, the break-down or lattice dissociation enthalpy is +787 kJ mol-1


When talking about lattice formation, the energy released when a lattice is created from its scattered gaseous state- is forming up. In the case of NaCl, the build-up or lattice formation enthalpy is -787 kJ mol-1


Hence, the lattice dissociation enthalpies are always positive and the lattice formation enthalpies are always negative.  


How to Calculate Lattice Enthalpy? 

It is essential to note that you cannot measure the enthalpy change starting from a solid crystal that converts it into its gaseous ions.  It is tougher to calculate the reverse scenario where you start with the gaseous ions and measure the change when the ions convert to solid-state. However, you can calculate lattice enthalpies in two different ways: 


First, you can use a Hess law cycle or Born-Haber cycle that involves enthalpy changes that can be measured. Lattice enthalpies obtained through this method are known as experimental values. 


Secondly, you can do it the physics way by working out how much energy would be released to make a lattice when ions (as point charges) come together to form a lattice.  The calculation is about lattice energies and the values obtained are known as theoretical values.


Cross-section energy is the energy change on the arrangement of one mole of an ionic compound from its constituent particles in the vaporous state. It is a proportion of the firm powers of tight spot particles. Grid energy is applicable to numerous viable properties including solvency, hardness, and instability. The grid energy is normally derived from the Born–Haber cycle.


Grid Energy and Cross-Section Enthalpy

The development of a precious stone cross-section is exothermic, i.e., the worth of ΔHlattice is negative since it relates to the combining of boundlessly isolated vaporous particles in a vacuum to shape the ionic grid.


Sodium Chloride Precious Stone Cross-Section

The idea of cross-section energy was initially produced for rocksalt-organized and sphalerite-organized mixtures like NaCl and ZnS, where the particles involve high-even gem grid locales. On account of NaCl, grid energy is the energy delivered by the response


Na+ (g) + Cl (g) → NaCl (s)


which would add up to - 786 kJ/mol.


The connection between the molar cross-section energy and the molar grid enthalpy is given by the accompanying condition:


A few reading materials and the normally utilized CRC Handbook of Chemistry and Physics characterize grid energy (and enthalpy) with the contrary sign, for example as the energy needed to change over the precious stone into endlessly isolated vaporous particles in a vacuum, an endothermic cycle. Following this show, the cross-section energy of NaCl would be +786 kJ/mol. The cross-section energy for ionic precious stones, for example, sodium chloride, metals like iron, or covalently connected materials, for example, a jewel is significantly more noteworthy in extent than for solids, for example, sugar or iodine, whose unbiased particles associate exclusively by more fragile dipole-dipole or van der Waals powers.


Hypothetical Medicines

The cross-section energy of an ionic compound relies on charges of the particles that contain the strong. All the more unpretentiously, the family members and outright sizes of the particles impact ΔHlattice.


Conceived Landé Condition

In 1918 Born and Landé recommended that grid energy could be gotten from the electric capability of the ionic cross-section, a terrible potential energy term.

NA is the Avogadro constant;

M is the Madelung consistent, identifying with the calculation of the precious stone;

z+ is the charge number of cation;

z is the charge number of anion;

e is the rudimentary charge, equivalent to 1.6022×10−19 C;

ε0 is the permittivity of free space, equivalent to 8.854×10−12 C2 J−1 m−1;

r0 is the distance to the nearest particle; and

n is the Born type, a number somewhere in the range of 5, still up in the air tentatively by estimating the compressibility of the strong or determined hypothetically.


The Born–Landé condition shows that the grid energy of a compound relies upon various elements as the charges on the particles increment the grid energy increments (turns out to be more negative), at the point when particles are nearer together the cross-section energy increments (turns out to be more negative) Barium oxide (BaO), for example, which has the NaCl structure and in this manner a similar Madelung steady, has a bond sweep of 275 picometers and cross-section energy of - 3054 kJ/mol, while sodium chloride (NaCl) has a bond span of 283 picometers and grid energy of - 786 kJ/mol.


Kapustinskii Condition

The Kapustinskii condition can be utilized as a less complex method of inferring cross-section energies where high accuracy isn't needed.


Impact of Polarization

For ionic mixtures with particles possessing grid destinations with crystallographic point bunches C1, C1h, Cn, or Cnv (n = 2, 3, 4, or 6) the idea of the cross-section energy and the Born–Haber cycle must be extended. In these cases, the polarization energy Epol related to particles on polar grid locales must be remembered for the Born–Haber cycle and the strong development response needs to begin from the generally energized species. For instance, one might think about the instance of iron-pyrite FeS2, where sulfur particles possess a cross-section site of point evenness bunch C3. The grid energy characterizing response then, at that point, peruses


Fe2+ (g) + 2 pol S (g) → FeS2 (s)


where pol S represents the spellbound, vaporous sulfur particle. It has been shown that the neglect of the impact prompted a 15% distinction among hypothetical and trial thermodynamic cycle energies of FeS2 that diminished to just 2% when the sulfur polarization impacts were incorporated.

FAQs on Lattice Enthalpy of an Ionic Solid

1. What is Lattice Energy and How is it Determined by the Born - Haber cycle?

Lattice energy is defined in two ways-

The energy that is needed for breaking an ionic solid into its component atoms and the conversion of component atoms into gaseous ions is known as lattice energy. Here, the reaction is endothermic and the lattice energy is positive. Secondly, the energy released when the gaseous ions combine to form an ionic solid is known as lattice energy. Here, the reaction is exothermic and lattice energy is negative. 


Born-Haber cycle for the formation of ionic solid has 5 steps - the sublimation of a solid metal to a gaseous state, ionizations to cation, bond dissociation of 2nd gaseous molecule, the formation of anion by gaining of 1 electron, and combining of both gaseous ions to form ionic solid.

2.  What are the Practical Applications of Lattice Enthalpies?

The applications of lattice energy are in use to evaluate the electron relations and fluoride relationships, estimation of standard enthalpies formation and lattice energy is in use to determine the strength of ionic solids.  A detailed explanation is – 


The Lattice energy factor helps to find the released energy from a compound when a number of ions come together to make that particular compound. 


It is primarily used to find the strength of ionic compounds or solids.  Typically, the ionic solids or compounds have high lattice energy that allows a solid to attain more stability which makes it tough to break the bond between them.

3. How does charge on the ion effect Lattice Enthalpy?

Charge on the Particle:

The particles in the grid gem are drawn in because of an electrostatic power of fascination present between them. As we realize that this power is straightforwardly corresponding to the greatness of charge, consequently higher the charge more grounded in the cross-section.


For example, Potassium Chloride and Calcium Chloride have a similar gem grid game plan yet the cross-section enthalpy of the last option is more noteworthy than the previous. This is on the grounds that calcium particles have 2+ charges while potassium particles have just 1+ charge and as we realize that electrostatic power of fascination is straightforwardly relative to charge, so on account of calcium chloride, this power is more grounded.