Introduction
In 1885, Adolf Baeyar theorized on how to create stability of the first few cycloalkanes, which was derived from the idea that in tetrahedral geometry, there's a normal angle between a pair of carbon atom bonds in 109.28' metal molecules. In the subject of Tetrahedral Geometry, this concept became very vital and helped us find out that the bond angle for carbon atoms is 109.28' (or 109.50) methane molecules. Baeyar also found out that these cycloalkanes have distinct bond angles and also different properties and stability at the same time. This is when, based on this, he first thought of proposing Strain Theory.
Overview of Strain theory
This theory, when published, described the cycloalkane reactivity and its stability in great depths. It also told us that the optimum overlap of atomic orbitals is achieved for a bond angle of 109.50. So in a gist, from this theory, we can conclude that this is the best bond angle for alkanes.
This abundantly efficient and preferable overlap of atomic orbitals gives results where we achieve the highest bond strength and the vastly stable molecule.
The rings in this experiment cause distress on the bond angles as they deviate from the ideal. This also helps us observe that the higher the pressure, the more unstable the system is. Such a higher strain concludes in an increase in reactivity and heat combustion. As Baeyer stated, if we deviate from the bond angle from the perfect bond angle value, which is 109.50, it will create a strain in the molecule. This will result in a lower variance and a much less unstable solution.
Assumptions of strain theory
This theory is founded on the following assumptions:
Planar Rings are utilized in all of the ring structures. Unstable Cycloalkanes originate due to divergences from the general tetrahedral angles.
Large Ring Structures contain negative strains, but these do not exist.
Since these cycloalkanes have carbon rings with a puckered texture instead of a planar(flat) structure, their bond angles are around 109.50 or less—for example, Cycloheptane, Cyclooctane, and Cyclopentolate.
These assumptions form the ground basis for comprehending the instability in the cycloalkane ring system.
Baeyer's Strain Theory in Cycloalkanes
When carbon gets bound to two other carbon atoms in propane, which is an open-chain compound, it is s sp3 hybridized; these hybrid orbitals are usually utilized to form strong sigma bonds.
Since these carbon atoms are present in the cyclopropane, they do not use these hybrid orbitals to form any bonds; their bent-bond is weaker than a general carbon to carbon bond. This strain is known as the angle strain.
This ring produces strains with bond angles that deviate from the ideal. We can observe that higher strains result in increased volatility, combustion of heat and reactivity. In simple words, the deviation is directly related to the instability.
By assuming this, Baeyer discovered that a number of cycloalkanes have different types of bond angles and different properties and stabilities.
He proposed that the angle in the strain theory is based on this and this theory describes the stability and reactivity.
The cyclopropane ring is in the shape of a triangle and has a standard tetrahedral structure where the angle is between the two bonds that are compressed to 60oand each of these bonds involved is pulled in by 24.75⁰.
What happens is that all three angles become 60o instead of109.5o, which is the normal bond angle for a carbon atom.
The deviation or Angle strain of each and every bond is defined by the value of 24.75⁰.
In the same way, a cyclobutane is a square with the bond angles of 90⁰ and not 109.5⁰ to make the ring system square with an angle strain of 9.75⁰.
When we talk about the cyclopropane and cyclobutane ring systems, a ring pressure is caused by a usual tetrahedral angle.
In contrast to this Baeyer believed that cyclopropanes are highly stressed and unstable compounds.
As a result, the triangle ring can be opened up even with a slight provocation, with a release of tension with them. This is true as the cyclopropane undergoes Br₂ ring-opening reactions.
Cyclopentane, on the other hand, is known to be the least stressed and the most stable. This is why it also has no ring-opening reactions.
In Cyclohexane, the strain angle is bigger than it is in cyclopentane. This states that if the number of the ring increases, the strain increases with it.
So, in theory, cyclohexane and higher cycloalkanes become more reactive and unstable as time passes.
But in contrast to this prediction, cyclohexane and the members of this group turned out to be highly stable, which meant that they go through substitution instead of additional reactions.
As a result, this hypothesis only accounts for the first three adequately. Hence, Cyclopentane > Cyclobutane > Cyclopropane
Limitations
The Baeyar was not able to describe the impact of an angle pressure in the larger structures.
According to him, cyclohexane is less stable than cyclopentane, but the reality is the opposite of this.
He stated that due to negative pressure, larger ring structures are not possible, but they do exist and are highly stable.
For the removal of angle pressure, larger ring structures are wrinkled (puckered) instead of being planar (flat).
Did You Know?
Simple and larger cycloalkanes are very stable, similar to alkanes, and their reactions, such as radical chain reactions, are similar to alkane reactions. Due to Baeyer strain and ring strain, small cycloalkanes, especially cyclopropane, have lower stability. They react in the same way as alkenes, but instead of electrophilic addition, they react in nucleophilic aliphatic substitution. Ring-opening or ring-cleavage reactions of alkyl cycloalkanes are these reactions.
A Diels–Alder reaction followed by catalytic hydrogenation may produce cycloalkanes. Medium rings have higher rates in nucleophilic substitution reactions but lower rates in ketone reduction. This is due to the conversion of sp₃ to sp₂ states, or vice versa, and the preference for the sp₂ state in medium rings, which relieves some of the unfavorable torsional strain in saturated rings. Many redox or substitution reactions have linear associations with strain energy differences SI between an sp₂ and sp₃ state measured using molecular mechanics.
FAQs on Strain Theory
1. Which of the Cycloalkanes has the Greatest Angle Strain?
Since their bond angles deviate significantly from 109.5° and their hydrogens eclipse each other, the smaller cycloalkanes, cyclopropane, and cyclobutane have especially high ring strains.
2. What is the Principle Behind Strainless Rings?
Yes, there is a principle that exists behind stainless rings; this principle is known as the Theory of Stainless Rings, also known as the Sachse-Mohr Theory. This theory was first hypothesized by Herman Sachse in 1890, where he said that cyclohexane, which was previously considered a planar hexagon, has a tetrahedral symmetry and are arranged amongst each other without any tension. The Theory of Stainless Rings states that Carbon Atoms (C6) are present in different planes in cycloalkanes, and they restore natural tetrahedral angles and ring puckers. Stainless Rings are the type of rings that are free of any angling pressure.
3. What is Meant by Angle Strain?
An angle strain is an increase in a certain molecule's possible energy, which occurs due to bond angles that deviate from ideal values. For example, Cyclopropane, because of its rigidity, can assume only one conformation, which is that of a plane. It is achieved when bond angles achieve an ideal maximum bond strength in a particular chemical bond conformation. These angle strains generally affect the cyclic molecules that require the flexibility of acyclic molecules that are not present in them. Tetracoordinate carbon atoms are present in cyclopropane rings.
4. What are the different properties of Cycloalkanes?
Cycloalkanes are a type of alkanes that contain one or more rings of carbon atoms in their structure. They have various properties ranging from physical to chemical.
Some of the physical properties include higher boiling points melting points, higher densities because of the greater number of forces they contain. On the other hand, the chemical properties help us observe that these alkanes only contain the C-C and C-H bonds, where there is an unreactivity of these alkanes with little to no ring strain available and are drastically different and comparable to non-cyclic alkanes.
5. What are Cycloalkanes used for?
Cycloalkanes are a series of homologous alkanes whose names begin with cyclo- and end with -ane — for example, Cyclopropane. Cycloalkanes have a common formula of CnH2n. Cycloalkanes are highly saturated and only contain single bonds. In other words, we can even say that they are the isomers of the alkanes. There are many examples of cycloalkanes that are used in products we see and use in daily life, such as motor fuel, natural gas, diesel, kerosene and other kinds of heavy oils.
6. Are larger cycloalkanes stable?
Simple and Larger Cycloalkanes are highly stable and very similar to alkanes; their reactions, like the radical chain reactions, are also very similar to alkane reactions. Due to the Baeyer Strain and the Ring Strain, smaller cycloalkanes like cyclopropane have lower stability.
But they react in a similar way as alkenes; the only thing is that instead of electrophilic addition, they react in nucleophilic aliphatic substitution. Some examples of these reactions would be the ring-opening or ring-cleavage reactions of the alkyl cycloalkanes.