Answer
Verified
109.8k+ views
Hint: We will find the cofactors of the given matrix. Then we will find the transpose matrix of the cofactor matrix to find the adjoint matrix.
Formula used:
The adjoint of the matrix \[\left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is \[\left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{21}}}&{{A_{31}}}\\{{A_{12}}}&{{A_{22}}}&{{A_{32}}}\\{{A_{13}}}&{{A_{23}}}&{{A_{33}}}\end{array}} \right]\]where \[{A_{ij}}\] are the cofactors.
Complete step by step solution:
Given matrix is \[A = \left[ {\begin{array}{*{20}{c}}3&{ - 3}&4\\2&{ - 3}&4\\0&{ - 1}&1\end{array}} \right]\].
The cofactors of A are
\[{A_{11}} = \left| {\begin{array}{*{20}{c}}{ - 3}&4\\{ - 1}&1\end{array}} \right|\]
\[ = - 3 \cdot 1 - 4\left( { - 1} \right)\]
\[ = 1\]
\[{A_{12}} = - \left| {\begin{array}{*{20}{c}}2&4\\0&1\end{array}} \right|\]
\[ = - \left( {2 \cdot 1 - 4 \cdot 0} \right)\]
\[ = - 2\]
\[{A_{13}} = \left| {\begin{array}{*{20}{c}}2&3\\0&{ - 1}\end{array}} \right|\]
\[ = 2 \cdot \left( { - 1} \right) - 3 \cdot 0\]
\[ = - 2\]
\[{A_{21}} = - \left| {\begin{array}{*{20}{c}}{ - 3}&4\\{ - 1}&1\end{array}} \right|\]
\[ = - \left[ { - 3 \cdot 1 - 4 \cdot \left( { - 1} \right)} \right]\]
\[ = - 1\]
\[{A_{22}} = \left| {\begin{array}{*{20}{c}}3&4\\0&1\end{array}} \right|\]
\[ = \left[ {3 \cdot 1 - 4 \cdot 0} \right]\]
\[ = 3\]
\[{A_{23}} = - \left| {\begin{array}{*{20}{c}}3&{ - 3}\\0&{ - 1}\end{array}} \right|\]
\[ = - \left[ {3 \cdot \left( { - 1} \right) - \left( { - 3} \right) \cdot 0} \right]\]
\[ = 3\]
\[{A_{31}} = \left| {\begin{array}{*{20}{c}}{ - 3}&4\\{ - 3}&4\end{array}} \right|\]
\[ = \left[ { - 3 \cdot 4 - \left( { - 3} \right) \cdot 4} \right]\]
\[ = 0\]
\[{A_{32}} = - \left| {\begin{array}{*{20}{c}}3&4\\2&4\end{array}} \right|\]
\[ = - \left[ {3 \cdot 4 - 2 \cdot 4} \right]\]
\[ = - 4\]
\[{A_{33}} = \left| {\begin{array}{*{20}{c}}3&{ - 3}\\2&{ - 3}\end{array}} \right|\]
\[ = \left[ {3 \cdot \left( { - 3} \right) - 2 \cdot \left( { - 3} \right)} \right]\]
\[ = - 3\]
The Adjoint of the matrix is
\[Adj\,A = \left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{21}}}&{{A_{31}}}\\{{A_{12}}}&{{A_{22}}}&{{A_{32}}}\\{{A_{13}}}&{{A_{23}}}&{{A_{33}}}\end{array}} \right]\]
Substitute the value of cofactors
\[ = \left[ {\begin{array}{*{20}{c}}1&{ - 1}&0\\{ - 2}&3&{ - 4}\\{ - 2}&3&{ - 3}\end{array}} \right]\]
Hence option B is the correct option.
Additional information:
We can find the adjoint of a matrix if the matrix is a square matrix. This means the number of rows is equal to the number of columns. The adjoint of a matrix is used to the determine inverse of that matrix. In other words, we can find the inverse of a matrix if the matrix is a square matrix.
Note: Students often do a common mistake to find the adjoint of the matrix. They forgot to transpose the cofactor matrix. To calculate the adjoint we have to find the transpose matrix of the cofactor matrix.
Formula used:
The adjoint of the matrix \[\left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is \[\left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{21}}}&{{A_{31}}}\\{{A_{12}}}&{{A_{22}}}&{{A_{32}}}\\{{A_{13}}}&{{A_{23}}}&{{A_{33}}}\end{array}} \right]\]where \[{A_{ij}}\] are the cofactors.
Complete step by step solution:
Given matrix is \[A = \left[ {\begin{array}{*{20}{c}}3&{ - 3}&4\\2&{ - 3}&4\\0&{ - 1}&1\end{array}} \right]\].
The cofactors of A are
\[{A_{11}} = \left| {\begin{array}{*{20}{c}}{ - 3}&4\\{ - 1}&1\end{array}} \right|\]
\[ = - 3 \cdot 1 - 4\left( { - 1} \right)\]
\[ = 1\]
\[{A_{12}} = - \left| {\begin{array}{*{20}{c}}2&4\\0&1\end{array}} \right|\]
\[ = - \left( {2 \cdot 1 - 4 \cdot 0} \right)\]
\[ = - 2\]
\[{A_{13}} = \left| {\begin{array}{*{20}{c}}2&3\\0&{ - 1}\end{array}} \right|\]
\[ = 2 \cdot \left( { - 1} \right) - 3 \cdot 0\]
\[ = - 2\]
\[{A_{21}} = - \left| {\begin{array}{*{20}{c}}{ - 3}&4\\{ - 1}&1\end{array}} \right|\]
\[ = - \left[ { - 3 \cdot 1 - 4 \cdot \left( { - 1} \right)} \right]\]
\[ = - 1\]
\[{A_{22}} = \left| {\begin{array}{*{20}{c}}3&4\\0&1\end{array}} \right|\]
\[ = \left[ {3 \cdot 1 - 4 \cdot 0} \right]\]
\[ = 3\]
\[{A_{23}} = - \left| {\begin{array}{*{20}{c}}3&{ - 3}\\0&{ - 1}\end{array}} \right|\]
\[ = - \left[ {3 \cdot \left( { - 1} \right) - \left( { - 3} \right) \cdot 0} \right]\]
\[ = 3\]
\[{A_{31}} = \left| {\begin{array}{*{20}{c}}{ - 3}&4\\{ - 3}&4\end{array}} \right|\]
\[ = \left[ { - 3 \cdot 4 - \left( { - 3} \right) \cdot 4} \right]\]
\[ = 0\]
\[{A_{32}} = - \left| {\begin{array}{*{20}{c}}3&4\\2&4\end{array}} \right|\]
\[ = - \left[ {3 \cdot 4 - 2 \cdot 4} \right]\]
\[ = - 4\]
\[{A_{33}} = \left| {\begin{array}{*{20}{c}}3&{ - 3}\\2&{ - 3}\end{array}} \right|\]
\[ = \left[ {3 \cdot \left( { - 3} \right) - 2 \cdot \left( { - 3} \right)} \right]\]
\[ = - 3\]
The Adjoint of the matrix is
\[Adj\,A = \left[ {\begin{array}{*{20}{c}}{{A_{11}}}&{{A_{21}}}&{{A_{31}}}\\{{A_{12}}}&{{A_{22}}}&{{A_{32}}}\\{{A_{13}}}&{{A_{23}}}&{{A_{33}}}\end{array}} \right]\]
Substitute the value of cofactors
\[ = \left[ {\begin{array}{*{20}{c}}1&{ - 1}&0\\{ - 2}&3&{ - 4}\\{ - 2}&3&{ - 3}\end{array}} \right]\]
Hence option B is the correct option.
Additional information:
We can find the adjoint of a matrix if the matrix is a square matrix. This means the number of rows is equal to the number of columns. The adjoint of a matrix is used to the determine inverse of that matrix. In other words, we can find the inverse of a matrix if the matrix is a square matrix.
Note: Students often do a common mistake to find the adjoint of the matrix. They forgot to transpose the cofactor matrix. To calculate the adjoint we have to find the transpose matrix of the cofactor matrix.
Recently Updated Pages
Explain damped oscillations Give an example class 11 physics JEE_Advanced
If u left x2 + y2 + z2 rightdfrac12 then prove that class 12 maths JEE_Advanced
If rmX is a square matrix of order rm3 times rm3and class 12 maths JEE_Advanced
IfA left beginarray20c 122 1endarray right B left beginarray20c31endarray class 12 maths JEE_Advanced
If for the matrix A A3 I then find A 1 A A2 B A3 C class 12 maths JEE_Advanced
If matrix A left beginarray20c32412 1011endarray right class 12 maths JEE_Advanced