Answer
Verified
96k+ views
Hint: First, compare the given value of the inverse matrix with the standard formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\]. Then calculate the determinant of the matrix \[A\] to the required value of \[K\].
Formula used:
Inverse matrix: \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\]
The determinant of a \[3 \times 3\] matrix \[A = \left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is: \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{22}}} \right)\]
Complete step by step solution:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}3&2&4\\1&2&{ - 1}\\0&1&1\end{array}} \right]\] and the inverse of the matrix is \[{A^{ - 1}} = \dfrac{1}{K}adj\left( A \right)\]
Compare the value of the given inverse matrix with the standard formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\].
We get,
\[\dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{K}adj\left( A \right)\]
After comparing both sides, we get
\[ \Rightarrow \left| A \right| = K\] \[.....\left( 1 \right)\]
Now calculate the determinant of the given \[3 \times 3\] matrix.
Apply the formula of the determinant of a \[3 \times 3\] matrix \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{23}}} \right)\].
We get,
\[\left| A \right| = 3\left( {2 \times 1 - 1 \times \left( { - 1} \right)} \right) - 2\left( {1 \times 1 - 0 \times \left( { - 1} \right)} \right) + 4\left( {1 \times 1 - 0 \times 2} \right)\]
\[ \Rightarrow \left| A \right| = 3\left( {2 + 1} \right) - 2\left( {1 - 0} \right) + 4\left( {1 - 0} \right)\]
\[ \Rightarrow \left| A \right| = 3\left( 3 \right) - 2\left( 1 \right) + 4\left( 1 \right)\]
\[ \Rightarrow \left| A \right| = 9 - 2 + 4\]
\[ \Rightarrow \left| A \right| = 11\]
Comparing with the equation \[\left( 1 \right)\], we get
\[K = 11\]
Hence the correct option is D.
Note: Students often get confused and calculate the inverse matrix of the matrix by calculating the co-factors, adjoint matrix, and determinant using the formula of the inverse matrix. This method is correct but too lengthy for this type of question.
Formula used:
Inverse matrix: \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\]
The determinant of a \[3 \times 3\] matrix \[A = \left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is: \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{22}}} \right)\]
Complete step by step solution:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}3&2&4\\1&2&{ - 1}\\0&1&1\end{array}} \right]\] and the inverse of the matrix is \[{A^{ - 1}} = \dfrac{1}{K}adj\left( A \right)\]
Compare the value of the given inverse matrix with the standard formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)\].
We get,
\[\dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{K}adj\left( A \right)\]
After comparing both sides, we get
\[ \Rightarrow \left| A \right| = K\] \[.....\left( 1 \right)\]
Now calculate the determinant of the given \[3 \times 3\] matrix.
Apply the formula of the determinant of a \[3 \times 3\] matrix \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{23}}} \right)\].
We get,
\[\left| A \right| = 3\left( {2 \times 1 - 1 \times \left( { - 1} \right)} \right) - 2\left( {1 \times 1 - 0 \times \left( { - 1} \right)} \right) + 4\left( {1 \times 1 - 0 \times 2} \right)\]
\[ \Rightarrow \left| A \right| = 3\left( {2 + 1} \right) - 2\left( {1 - 0} \right) + 4\left( {1 - 0} \right)\]
\[ \Rightarrow \left| A \right| = 3\left( 3 \right) - 2\left( 1 \right) + 4\left( 1 \right)\]
\[ \Rightarrow \left| A \right| = 9 - 2 + 4\]
\[ \Rightarrow \left| A \right| = 11\]
Comparing with the equation \[\left( 1 \right)\], we get
\[K = 11\]
Hence the correct option is D.
Note: Students often get confused and calculate the inverse matrix of the matrix by calculating the co-factors, adjoint matrix, and determinant using the formula of the inverse matrix. This method is correct but too lengthy for this type of question.
Recently Updated Pages
Explain damped oscillations Give an example class 11 physics JEE_Advanced
What is the adjoint of A left beginarray20c3 342 340 class 12 maths JEE_Advanced
If u left x2 + y2 + z2 rightdfrac12 then prove that class 12 maths JEE_Advanced
If rmX is a square matrix of order rm3 times rm3and class 12 maths JEE_Advanced
IfA left beginarray20c 122 1endarray right B left beginarray20c31endarray class 12 maths JEE_Advanced
If for the matrix A A3 I then find A 1 A A2 B A3 C class 12 maths JEE_Advanced