12 cells, each of emf $1.5{\text{V}}$ and internal resistance $0.5\Omega $.are arranged in ${\text{m}}$ rows each containing $'{\text{n'}}$ cells connected in series, as shown. Calculate the values of $'{\text{n'}}$ and ${\text{'m'}}$ for which this combination would send maximum current through an external resistance of $1.5\Omega $.
Answer
Verified
115.5k+ views
Hint: In this question, we are having $12$ cells and each cell is having $15{\text{V}}$emf. There are ${\text{m}}$ number of rows and each row is having ${\text{n}}$ cells in each row that are connected in the series. The load resistance is equal to $1.5\Omega $. First, we find the ${R_{{\text{internal}}}}$ by using the resistance in series and parallel formulas and putting it into load resistance and find the value of ${\text{n}}$ and ${\text{m}}$.
Formula used:
Resistance in the series is written as;
${R_s} = {R_1} + {R_2} + .......$
Resistance in parallel is written as;
$\dfrac{1}{{{R_p}}} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}} + ......$
Complete step by step solution:
Here we can write the load resistance as;
${R_{{\text{load}}}} = {R_{{\text{internal}}}} - - - - (1)$
Now here we are having ${\text{n}}$ number of resistances in series so we can write it as,
${R_s} = nr$
Here we take $r$ for resistance in series because we are not getting any confusion.
And we have ${\text{m}}$ a number of resistance parallel formation.
Therefore, we can write internal resistance as,
${R_{{\text{internal}}}} = \dfrac{{{\text{n}}r}}{{\text{m}}}$
Now put this value in the equation $(1)$ we get;
${R_{{\text{load}}}} = \dfrac{{{\text{n}}r}}{{\text{m}}} - - - - (2)$
Here we have, $r = 0.5\Omega ,{R_{{\text{load}}}} = 1.5\Omega $, putting these values in the equation $(2)$ we get;
$1.5 = \dfrac{{\text{n}}}{{\text{m}}} \times 0.5 \\
\Rightarrow \dfrac{{\text{n}}}{{\text{m}}} = \dfrac{{1.5}}{{0.5}} \\
\Rightarrow \dfrac{{\text{n}}}{{\text{m}}} = 3 - - - - (3) \\
$
Now, we have total cells is,
$
{\text{n}} \times {\text{m = }}12 \\
\Rightarrow {\text{nm = }}12 - - - (4) \\
$
Dividing equation $(3)$ by the equation $(4)$ we get;
$
\dfrac{{\text{n}}}{{{\text{n}}{{\text{m}}^2}}} = \dfrac{3}{{12}} \\
\Rightarrow \dfrac{1}{{{{\text{m}}^2}}} = \dfrac{1}{4} \\
\Rightarrow {{\text{m}}^2} = 4 \\
\Rightarrow {\text{m = 2}} \\
$
Now, put this value of ${\text{m}}$ in the equation $(4)$ we get;
$
{\text{nm = 12}} \\
\Rightarrow {\text{n = }}\dfrac{{12}}{2} \\
\Rightarrow {\text{n = 6}} $
Hence there are $6$ cells in series and $2$ cells are parallel.
Hence, the value of ${\text{n = 6}}$ and ${\text{m = 2}}$.
Note: Do not confuse the formulas of series and parallel formation of resistance, they both have different formulas. If the resistances are connected in series then the overall resistance of the combination equals the sum of the resistance of each resistor and in case of parallel condition the overall resistance is less than the resistance of each resistor.
Formula used:
Resistance in the series is written as;
${R_s} = {R_1} + {R_2} + .......$
Resistance in parallel is written as;
$\dfrac{1}{{{R_p}}} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}} + ......$
Complete step by step solution:
Here we can write the load resistance as;
${R_{{\text{load}}}} = {R_{{\text{internal}}}} - - - - (1)$
Now here we are having ${\text{n}}$ number of resistances in series so we can write it as,
${R_s} = nr$
Here we take $r$ for resistance in series because we are not getting any confusion.
And we have ${\text{m}}$ a number of resistance parallel formation.
Therefore, we can write internal resistance as,
${R_{{\text{internal}}}} = \dfrac{{{\text{n}}r}}{{\text{m}}}$
Now put this value in the equation $(1)$ we get;
${R_{{\text{load}}}} = \dfrac{{{\text{n}}r}}{{\text{m}}} - - - - (2)$
Here we have, $r = 0.5\Omega ,{R_{{\text{load}}}} = 1.5\Omega $, putting these values in the equation $(2)$ we get;
$1.5 = \dfrac{{\text{n}}}{{\text{m}}} \times 0.5 \\
\Rightarrow \dfrac{{\text{n}}}{{\text{m}}} = \dfrac{{1.5}}{{0.5}} \\
\Rightarrow \dfrac{{\text{n}}}{{\text{m}}} = 3 - - - - (3) \\
$
Now, we have total cells is,
$
{\text{n}} \times {\text{m = }}12 \\
\Rightarrow {\text{nm = }}12 - - - (4) \\
$
Dividing equation $(3)$ by the equation $(4)$ we get;
$
\dfrac{{\text{n}}}{{{\text{n}}{{\text{m}}^2}}} = \dfrac{3}{{12}} \\
\Rightarrow \dfrac{1}{{{{\text{m}}^2}}} = \dfrac{1}{4} \\
\Rightarrow {{\text{m}}^2} = 4 \\
\Rightarrow {\text{m = 2}} \\
$
Now, put this value of ${\text{m}}$ in the equation $(4)$ we get;
$
{\text{nm = 12}} \\
\Rightarrow {\text{n = }}\dfrac{{12}}{2} \\
\Rightarrow {\text{n = 6}} $
Hence there are $6$ cells in series and $2$ cells are parallel.
Hence, the value of ${\text{n = 6}}$ and ${\text{m = 2}}$.
Note: Do not confuse the formulas of series and parallel formation of resistance, they both have different formulas. If the resistances are connected in series then the overall resistance of the combination equals the sum of the resistance of each resistor and in case of parallel condition the overall resistance is less than the resistance of each resistor.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main Chemistry Exam Pattern 2025 (Revised) - Vedantu
JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Collision - Important Concepts and Tips for JEE
Ideal and Non-Ideal Solutions Raoult's Law - JEE
Young's Double Slit Experiment Derivation
Current Loop as Magnetic Dipole and Its Derivation for JEE
When Barium is irradiated by a light of lambda 4000oversetomathopA class 12 physics JEE_Main