Answer
Verified
99.9k+ views
Hint: In this question, we are having $12$ cells and each cell is having $15{\text{V}}$emf. There are ${\text{m}}$ number of rows and each row is having ${\text{n}}$ cells in each row that are connected in the series. The load resistance is equal to $1.5\Omega $. First, we find the ${R_{{\text{internal}}}}$ by using the resistance in series and parallel formulas and putting it into load resistance and find the value of ${\text{n}}$ and ${\text{m}}$.
Formula used:
Resistance in the series is written as;
${R_s} = {R_1} + {R_2} + .......$
Resistance in parallel is written as;
$\dfrac{1}{{{R_p}}} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}} + ......$
Complete step by step solution:
Here we can write the load resistance as;
${R_{{\text{load}}}} = {R_{{\text{internal}}}} - - - - (1)$
Now here we are having ${\text{n}}$ number of resistances in series so we can write it as,
${R_s} = nr$
Here we take $r$ for resistance in series because we are not getting any confusion.
And we have ${\text{m}}$ a number of resistance parallel formation.
Therefore, we can write internal resistance as,
${R_{{\text{internal}}}} = \dfrac{{{\text{n}}r}}{{\text{m}}}$
Now put this value in the equation $(1)$ we get;
${R_{{\text{load}}}} = \dfrac{{{\text{n}}r}}{{\text{m}}} - - - - (2)$
Here we have, $r = 0.5\Omega ,{R_{{\text{load}}}} = 1.5\Omega $, putting these values in the equation $(2)$ we get;
$1.5 = \dfrac{{\text{n}}}{{\text{m}}} \times 0.5 \\
\Rightarrow \dfrac{{\text{n}}}{{\text{m}}} = \dfrac{{1.5}}{{0.5}} \\
\Rightarrow \dfrac{{\text{n}}}{{\text{m}}} = 3 - - - - (3) \\
$
Now, we have total cells is,
$
{\text{n}} \times {\text{m = }}12 \\
\Rightarrow {\text{nm = }}12 - - - (4) \\
$
Dividing equation $(3)$ by the equation $(4)$ we get;
$
\dfrac{{\text{n}}}{{{\text{n}}{{\text{m}}^2}}} = \dfrac{3}{{12}} \\
\Rightarrow \dfrac{1}{{{{\text{m}}^2}}} = \dfrac{1}{4} \\
\Rightarrow {{\text{m}}^2} = 4 \\
\Rightarrow {\text{m = 2}} \\
$
Now, put this value of ${\text{m}}$ in the equation $(4)$ we get;
$
{\text{nm = 12}} \\
\Rightarrow {\text{n = }}\dfrac{{12}}{2} \\
\Rightarrow {\text{n = 6}} $
Hence there are $6$ cells in series and $2$ cells are parallel.
Hence, the value of ${\text{n = 6}}$ and ${\text{m = 2}}$.
Note: Do not confuse the formulas of series and parallel formation of resistance, they both have different formulas. If the resistances are connected in series then the overall resistance of the combination equals the sum of the resistance of each resistor and in case of parallel condition the overall resistance is less than the resistance of each resistor.
Formula used:
Resistance in the series is written as;
${R_s} = {R_1} + {R_2} + .......$
Resistance in parallel is written as;
$\dfrac{1}{{{R_p}}} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}} + ......$
Complete step by step solution:
Here we can write the load resistance as;
${R_{{\text{load}}}} = {R_{{\text{internal}}}} - - - - (1)$
Now here we are having ${\text{n}}$ number of resistances in series so we can write it as,
${R_s} = nr$
Here we take $r$ for resistance in series because we are not getting any confusion.
And we have ${\text{m}}$ a number of resistance parallel formation.
Therefore, we can write internal resistance as,
${R_{{\text{internal}}}} = \dfrac{{{\text{n}}r}}{{\text{m}}}$
Now put this value in the equation $(1)$ we get;
${R_{{\text{load}}}} = \dfrac{{{\text{n}}r}}{{\text{m}}} - - - - (2)$
Here we have, $r = 0.5\Omega ,{R_{{\text{load}}}} = 1.5\Omega $, putting these values in the equation $(2)$ we get;
$1.5 = \dfrac{{\text{n}}}{{\text{m}}} \times 0.5 \\
\Rightarrow \dfrac{{\text{n}}}{{\text{m}}} = \dfrac{{1.5}}{{0.5}} \\
\Rightarrow \dfrac{{\text{n}}}{{\text{m}}} = 3 - - - - (3) \\
$
Now, we have total cells is,
$
{\text{n}} \times {\text{m = }}12 \\
\Rightarrow {\text{nm = }}12 - - - (4) \\
$
Dividing equation $(3)$ by the equation $(4)$ we get;
$
\dfrac{{\text{n}}}{{{\text{n}}{{\text{m}}^2}}} = \dfrac{3}{{12}} \\
\Rightarrow \dfrac{1}{{{{\text{m}}^2}}} = \dfrac{1}{4} \\
\Rightarrow {{\text{m}}^2} = 4 \\
\Rightarrow {\text{m = 2}} \\
$
Now, put this value of ${\text{m}}$ in the equation $(4)$ we get;
$
{\text{nm = 12}} \\
\Rightarrow {\text{n = }}\dfrac{{12}}{2} \\
\Rightarrow {\text{n = 6}} $
Hence there are $6$ cells in series and $2$ cells are parallel.
Hence, the value of ${\text{n = 6}}$ and ${\text{m = 2}}$.
Note: Do not confuse the formulas of series and parallel formation of resistance, they both have different formulas. If the resistances are connected in series then the overall resistance of the combination equals the sum of the resistance of each resistor and in case of parallel condition the overall resistance is less than the resistance of each resistor.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main