1.25g of a metal (M) reacts with oxygen completely to produce 1.68g of metal oxide. The empirical formula of the metal oxide is:
[Molar mass of M and O are 69.7 g/mol and g/mol respectively.]
(a) ${M_2}O$
(b) ${M_2}{O_3}$
(c) $M{O_2}$
(d) ${M_3}{O_4}$
Answer
Verified
116.4k+ views
Hint: Empirical formula of a compound is the simplest positive integer ratio of atoms present in a compound. It is obtained by dividing the molecular weight by n (a factor).
Complete step by step answer:
Mass of metal (M) = 1.25g
Metal oxide produced = 1.68g
Molar mass of metal (M) = 69.7 g/mol
Molar mass of oxygen (O) = 16.0 g/mol
1: The reaction is:
$M + {O_2} \to {M_x}{O_y}$
2: To find out the equivalent factor:
$\dfrac{{1.25}}{E} = \dfrac{{1.68}}{{E + 8}}$
Here, E is the equivalent mass of the metal.
3: The equivalent mass of oxygen is 8. We can calculate this by dividing the atomic mass of oxygen by its valency. We know atomic mass of oxygen is 16u and its valency is 2. So equivalent mass is 8u.
4: Cross multiplying the above equation, we get:
$
1.68E = (E + 8)1.25 \\
\Rightarrow 1.68E - 1.25E = 8 \times 1.25 \\
\\
$ (By simplifying)
$
\Rightarrow 0.43E = 10 \\
\Rightarrow E = 23.25 \\
$
5: Now the n-factor comes out to be:
$
\dfrac{{69.7}}{{23.25}} = 3 \\
\therefore n = 3 \\
$
So, the charge on M will be +3. For oxygen, as we know it will be -2
6: So \[{M^{3 + }}{O^{2 - }}\] for ${M_x}{O_y}$
$ \Rightarrow {M_2}{O_3}$ , where x=2 and y=3
Thus, the Empirical Formula of the metal oxide will be ${M_2}{O_3}$.
The correct option is (b)
Note:
The concept of empirical formula must also be clear. Let’s take an example to understand it better. Suppose for sulphur monoxide the empirical formula will be SO. This will also be the empirical formula for disulfur dioxide even though its molecular formula is ${S_2}{O_2}.$
Thus the empirical formula doesn’t represent the actual number of atoms. It represents the simplest positive integer ratio of atoms. When we multiply it by n-factor we obtain the molecular formula with the actual number of atoms.
Complete step by step answer:
Mass of metal (M) = 1.25g
Metal oxide produced = 1.68g
Molar mass of metal (M) = 69.7 g/mol
Molar mass of oxygen (O) = 16.0 g/mol
1: The reaction is:
$M + {O_2} \to {M_x}{O_y}$
2: To find out the equivalent factor:
$\dfrac{{1.25}}{E} = \dfrac{{1.68}}{{E + 8}}$
Here, E is the equivalent mass of the metal.
3: The equivalent mass of oxygen is 8. We can calculate this by dividing the atomic mass of oxygen by its valency. We know atomic mass of oxygen is 16u and its valency is 2. So equivalent mass is 8u.
4: Cross multiplying the above equation, we get:
$
1.68E = (E + 8)1.25 \\
\Rightarrow 1.68E - 1.25E = 8 \times 1.25 \\
\\
$ (By simplifying)
$
\Rightarrow 0.43E = 10 \\
\Rightarrow E = 23.25 \\
$
5: Now the n-factor comes out to be:
$
\dfrac{{69.7}}{{23.25}} = 3 \\
\therefore n = 3 \\
$
So, the charge on M will be +3. For oxygen, as we know it will be -2
6: So \[{M^{3 + }}{O^{2 - }}\] for ${M_x}{O_y}$
$ \Rightarrow {M_2}{O_3}$ , where x=2 and y=3
Thus, the Empirical Formula of the metal oxide will be ${M_2}{O_3}$.
The correct option is (b)
Note:
The concept of empirical formula must also be clear. Let’s take an example to understand it better. Suppose for sulphur monoxide the empirical formula will be SO. This will also be the empirical formula for disulfur dioxide even though its molecular formula is ${S_2}{O_2}.$
Thus the empirical formula doesn’t represent the actual number of atoms. It represents the simplest positive integer ratio of atoms. When we multiply it by n-factor we obtain the molecular formula with the actual number of atoms.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction
NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics
NCERT Solutions for Class 11 Chemistry Chapter 8 Organic Chemistry
NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons
Equilibrium Class 11 Notes: CBSE Chemistry Chapter 6