
1mol of ferric oxalate is oxidized by ‘x’ mol of $Mn{{O}_{4}}^{-}$in acidic medium. Hence, the value of x is-
[A] 1.2
[B] 1.6
[C] 1.8
[D] 1.5
Answer
225.6k+ views
Hint: The reaction given to us is a redox reaction. Here carbon will be oxidised and manganese is reduced. We can solve this question by calculating the valency factor and number of moles of each. We can equate the equivalents of the oxidised and the reduced units and solve for x to get the answer.
Complete step by step answer:
We know that the formula of ferric oxalate is$F{{e}_{2}}{{({{C}_{2}}{{O}_{4}})}_{3}}$.
According to the question, ferric oxalate is oxidized by$Mn{{O}_{4}}^{-}$in acidic medium.
We can write the dissociation of ferric oxalate as-
\[F{{e}_{2}}{{({{C}_{2}}{{O}_{4}})}_{3}}\to 2F{{e}^{3+}}+3{{C}_{2}}{{O}_{4}}^{2-}\]
Here, iron is in +3 oxidation state which is its highest oxidation state therefore we cannot oxidize it further. Therefore, we have carbon left for oxidising. We can write the reaction as-
\[{{C}_{2}}{{O}_{4}}^{2-}\to 2{{C}^{4+}}\]
Here, the oxidation state of carbon changes from +3 to +4. For one molecule of ${{C}_{2}}{{O}_{4}}^{2-}$we have two molecules of ${{C}^{4+}}$and we have three molecules${{C}_{2}}{{O}_{4}}^{2-}$. Therefore, if we want to write the oxidation reaction for ${{({{C}_{2}}{{O}_{4}})}_{3}}^{2-}$atoms considering only the carbon atom, we will get-
\[3{{({{C}^{3+}})}_{2}}\to 6{{C}^{4+}}+6{{e}^{-}}\]
Here, carbon is oxidised from +3 to +6 by losing six electrons. Therefore, the valency factor will be 6.
Similarly, manganese in $Mn{{O}_{4}}^{-}$is reduced from +7 to +2. We can write the reaction as-
\[M{{n}^{+7}}+5{{e}^{-}}\to M{{n}^{2+}}\]
As we can see, manganese changes its oxidation state from +7 to +2 by accepting five electrons. Therefore, the valency factor will be 5.
We can equate the equivalents of the oxidised and the reduced as it is a redox reaction.
Therefore, number of moles of $F{{e}_{2}}{{({{C}_{2}}{{O}_{4}})}_{3}}$$\times $valency factor = number of moles of$Mn{{O}_{4}}^{-}$$\times $valency factor.
As we can see in the question, number of moles of $F{{e}_{2}}{{({{C}_{2}}{{O}_{4}})}_{3}}$is given as 1 and that of$Mn{{O}_{4}}^{-}$is x and we have calculated that the valency factor of $F{{e}_{2}}{{({{C}_{2}}{{O}_{4}})}_{3}}$is 6 and that of$Mn{{O}_{4}}^{-}$is 1.
Therefore, putting these values we will get-
\[1\times 6=x\times 5\]
Or, $x=\dfrac{6}{5}=1.2$
Therefore, from the above calculations, we have found that x is 1.2.
Therefore the correct answer is option [A] 1.2.
Note:
As the above reaction is a redox reaction where ferric oxalate is oxidised by$Mn{{O}_{4}}^{-}$, it is a redox reaction as carbon is oxidised and manganese is reduced, we can also write that n-factor will be the change in oxidation numbers of carbon and manganese and it will give us the same result as change in oxidation state for manganese is +7 to +2 which gives us 5 and for carbon it is +3 to +4 which gives us +1 but we have 6 carbon atoms in the balanced reaction therefore, it will be $6(no. Of moles)\times 1$ (change in oxidation state) which will be 6.
Complete step by step answer:
We know that the formula of ferric oxalate is$F{{e}_{2}}{{({{C}_{2}}{{O}_{4}})}_{3}}$.
According to the question, ferric oxalate is oxidized by$Mn{{O}_{4}}^{-}$in acidic medium.
We can write the dissociation of ferric oxalate as-
\[F{{e}_{2}}{{({{C}_{2}}{{O}_{4}})}_{3}}\to 2F{{e}^{3+}}+3{{C}_{2}}{{O}_{4}}^{2-}\]
Here, iron is in +3 oxidation state which is its highest oxidation state therefore we cannot oxidize it further. Therefore, we have carbon left for oxidising. We can write the reaction as-
\[{{C}_{2}}{{O}_{4}}^{2-}\to 2{{C}^{4+}}\]
Here, the oxidation state of carbon changes from +3 to +4. For one molecule of ${{C}_{2}}{{O}_{4}}^{2-}$we have two molecules of ${{C}^{4+}}$and we have three molecules${{C}_{2}}{{O}_{4}}^{2-}$. Therefore, if we want to write the oxidation reaction for ${{({{C}_{2}}{{O}_{4}})}_{3}}^{2-}$atoms considering only the carbon atom, we will get-
\[3{{({{C}^{3+}})}_{2}}\to 6{{C}^{4+}}+6{{e}^{-}}\]
Here, carbon is oxidised from +3 to +6 by losing six electrons. Therefore, the valency factor will be 6.
Similarly, manganese in $Mn{{O}_{4}}^{-}$is reduced from +7 to +2. We can write the reaction as-
\[M{{n}^{+7}}+5{{e}^{-}}\to M{{n}^{2+}}\]
As we can see, manganese changes its oxidation state from +7 to +2 by accepting five electrons. Therefore, the valency factor will be 5.
We can equate the equivalents of the oxidised and the reduced as it is a redox reaction.
Therefore, number of moles of $F{{e}_{2}}{{({{C}_{2}}{{O}_{4}})}_{3}}$$\times $valency factor = number of moles of$Mn{{O}_{4}}^{-}$$\times $valency factor.
As we can see in the question, number of moles of $F{{e}_{2}}{{({{C}_{2}}{{O}_{4}})}_{3}}$is given as 1 and that of$Mn{{O}_{4}}^{-}$is x and we have calculated that the valency factor of $F{{e}_{2}}{{({{C}_{2}}{{O}_{4}})}_{3}}$is 6 and that of$Mn{{O}_{4}}^{-}$is 1.
Therefore, putting these values we will get-
\[1\times 6=x\times 5\]
Or, $x=\dfrac{6}{5}=1.2$
Therefore, from the above calculations, we have found that x is 1.2.
Therefore the correct answer is option [A] 1.2.
Note:
As the above reaction is a redox reaction where ferric oxalate is oxidised by$Mn{{O}_{4}}^{-}$, it is a redox reaction as carbon is oxidised and manganese is reduced, we can also write that n-factor will be the change in oxidation numbers of carbon and manganese and it will give us the same result as change in oxidation state for manganese is +7 to +2 which gives us 5 and for carbon it is +3 to +4 which gives us +1 but we have 6 carbon atoms in the balanced reaction therefore, it will be $6(no. Of moles)\times 1$ (change in oxidation state) which will be 6.
Recently Updated Pages
JEE Main 2026 Session 1 Correction Window Started: Check Dates, Edit Link & Fees

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Isoelectronic Definition in Chemistry: Meaning, Examples & Trends

Ionisation Energy and Ionisation Potential Explained

Iodoform Reactions - Important Concepts and Tips for JEE

Introduction to Dimensions: Understanding the Basics

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

