
$7$ gentlemen and $4$ ladies can sit at a round table so that two particular ladies may not sit together in
(a) \[7!3!2!{\text{ ways}}\]
(b) \[6! {}^6{P_4}\] ways
(c) \[6! {}^7{P_4}\] ways
(d) \[6! {}^4{P_2}\] ways
Answer
232.8k+ views
Hint: This problem can be solved by permutations. A Permutation of a set is an arrangement of its members into a sequence or linear ordered, a rearrangement of its elements.
Here we have to arrange $7$ gentlemen and $4$ ladies can sit at a round table so that two particular ladies may not sit together.
We know that \[n\] things can be arranged around a round table in \[\left( {n - 1} \right)!\] ways
First, we arrange $7$ gentlemen at a round table in \[6!\] ways
Then we arrange $4$ ladies so that two particular ladies may not sit together.
We know that if \[m\] gentlemen and \[n\] ladies are to be seated at a round table so that two particular ladies may not sit together can be arranged in \[{}^m{P_n}\] ways.
There are $7$ gaps between men and $4$ ladies are to be placed.
By using the above formula this can be done in \[{}^7{P_4}\] ways.
Therefore, that total arrangement can be done in \[6!{}^7{P_4}\] ways.
Thus the answer is option (c) \[6!{}^7{P_4}\] ways.
Note: In this problem we have used multiplicative principle of permutation i.e. if there are \[x\] ways of doing one thing and \[y\] ways of doing another, then the total number of ways of doing both the things is \[xy\] ways.
Here we have to arrange $7$ gentlemen and $4$ ladies can sit at a round table so that two particular ladies may not sit together.
We know that \[n\] things can be arranged around a round table in \[\left( {n - 1} \right)!\] ways
First, we arrange $7$ gentlemen at a round table in \[6!\] ways
Then we arrange $4$ ladies so that two particular ladies may not sit together.
We know that if \[m\] gentlemen and \[n\] ladies are to be seated at a round table so that two particular ladies may not sit together can be arranged in \[{}^m{P_n}\] ways.
There are $7$ gaps between men and $4$ ladies are to be placed.
By using the above formula this can be done in \[{}^7{P_4}\] ways.
Therefore, that total arrangement can be done in \[6!{}^7{P_4}\] ways.
Thus the answer is option (c) \[6!{}^7{P_4}\] ways.
Note: In this problem we have used multiplicative principle of permutation i.e. if there are \[x\] ways of doing one thing and \[y\] ways of doing another, then the total number of ways of doing both the things is \[xy\] ways.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

