
$7$ gentlemen and $4$ ladies can sit at a round table so that two particular ladies may not sit together in
(a) \[7!3!2!{\text{ ways}}\]
(b) \[6! {}^6{P_4}\] ways
(c) \[6! {}^7{P_4}\] ways
(d) \[6! {}^4{P_2}\] ways
Answer
133.8k+ views
Hint: This problem can be solved by permutations. A Permutation of a set is an arrangement of its members into a sequence or linear ordered, a rearrangement of its elements.
Here we have to arrange $7$ gentlemen and $4$ ladies can sit at a round table so that two particular ladies may not sit together.
We know that \[n\] things can be arranged around a round table in \[\left( {n - 1} \right)!\] ways
First, we arrange $7$ gentlemen at a round table in \[6!\] ways
Then we arrange $4$ ladies so that two particular ladies may not sit together.
We know that if \[m\] gentlemen and \[n\] ladies are to be seated at a round table so that two particular ladies may not sit together can be arranged in \[{}^m{P_n}\] ways.
There are $7$ gaps between men and $4$ ladies are to be placed.
By using the above formula this can be done in \[{}^7{P_4}\] ways.
Therefore, that total arrangement can be done in \[6!{}^7{P_4}\] ways.
Thus the answer is option (c) \[6!{}^7{P_4}\] ways.
Note: In this problem we have used multiplicative principle of permutation i.e. if there are \[x\] ways of doing one thing and \[y\] ways of doing another, then the total number of ways of doing both the things is \[xy\] ways.
Here we have to arrange $7$ gentlemen and $4$ ladies can sit at a round table so that two particular ladies may not sit together.
We know that \[n\] things can be arranged around a round table in \[\left( {n - 1} \right)!\] ways
First, we arrange $7$ gentlemen at a round table in \[6!\] ways
Then we arrange $4$ ladies so that two particular ladies may not sit together.
We know that if \[m\] gentlemen and \[n\] ladies are to be seated at a round table so that two particular ladies may not sit together can be arranged in \[{}^m{P_n}\] ways.
There are $7$ gaps between men and $4$ ladies are to be placed.
By using the above formula this can be done in \[{}^7{P_4}\] ways.
Therefore, that total arrangement can be done in \[6!{}^7{P_4}\] ways.
Thus the answer is option (c) \[6!{}^7{P_4}\] ways.
Note: In this problem we have used multiplicative principle of permutation i.e. if there are \[x\] ways of doing one thing and \[y\] ways of doing another, then the total number of ways of doing both the things is \[xy\] ways.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

Current Loop as Magnetic Dipole and Its Derivation for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2024 Syllabus Weightage

Inertial and Non-Inertial Frame of Reference - JEE Important Topic

JEE Main Chemistry Question Paper with Answer Keys and Solutions

CBSE Date Sheet 2025 Released for Class 12 Board Exams, Download PDF

CBSE Class 10 Hindi Sample Papers 2024-25
