Answer
Verified
112.8k+ views
Hint First calculate the time period of the AC current from the frequency given. Then using electromagnetic theory of induction derive the formula for voltage induced in the secondary. Substituting suitable values in this equation determines the answer.
Formulas used
$t = \dfrac{1}{f}$ where $t$ is the time period and $f$ is the frequency of the waveform.
${V_2} = M\dfrac{{d{i_1}}}{{dt}}$ where $M$is the mutual inductance, $d{i_1}$ is the change in current and $dt$ is the time difference.
Complete step by step answer
A transformer is an electrical device which can transfer electrical energy from one circuit to another. It usually consists of two windings with mutual inductance. One of the windings is called the primary while the other is called secondary. AC source is connected to the primary and a load to the secondary. The transformer can step up or step down the generator voltage.
The frequency of the given current is $50Hz$ so its time period is given by,
$t = \dfrac{1}{f} = \dfrac{1}{{50}}$$s$
In a transistor, the source can deliver power to the load via the magnetic coupling between the windings.
So, by formula,
${V_2} = M\dfrac{{d{i_1}}}{{dt}}$ where $M$is the mutual inductance, $d{i_1}$ is the change in current and $dt$ is the time difference.
We use this formula because a voltage is induced in the secondary coils of the transformer due to the change in current in the primary.
Now, the crest current is given as $1A$. In a complete waveform there is a crest and a trough having values $1A$ and $ - 1A$ respectively. So the change in current is $\left\{ {1 - \left( { - 1} \right)} \right\} = 2A$
The time difference between the crest and the trough of the current waveform is half of its total time period.
Substituting the values we get,
${V_2} = 0.5 \times \dfrac{2}{{\dfrac{1}{{2 \times 50}}}} = 100V$
Therefore, the crest voltage induced in the secondary is $100V$
Hence, the correct answer is C.
Note In a transformer, for low frequency operation laminated iron core is used but for radio frequency operation, to minimize eddy current while maintaining high flux density ferrite core is used.
Formulas used
$t = \dfrac{1}{f}$ where $t$ is the time period and $f$ is the frequency of the waveform.
${V_2} = M\dfrac{{d{i_1}}}{{dt}}$ where $M$is the mutual inductance, $d{i_1}$ is the change in current and $dt$ is the time difference.
Complete step by step answer
A transformer is an electrical device which can transfer electrical energy from one circuit to another. It usually consists of two windings with mutual inductance. One of the windings is called the primary while the other is called secondary. AC source is connected to the primary and a load to the secondary. The transformer can step up or step down the generator voltage.
The frequency of the given current is $50Hz$ so its time period is given by,
$t = \dfrac{1}{f} = \dfrac{1}{{50}}$$s$
In a transistor, the source can deliver power to the load via the magnetic coupling between the windings.
So, by formula,
${V_2} = M\dfrac{{d{i_1}}}{{dt}}$ where $M$is the mutual inductance, $d{i_1}$ is the change in current and $dt$ is the time difference.
We use this formula because a voltage is induced in the secondary coils of the transformer due to the change in current in the primary.
Now, the crest current is given as $1A$. In a complete waveform there is a crest and a trough having values $1A$ and $ - 1A$ respectively. So the change in current is $\left\{ {1 - \left( { - 1} \right)} \right\} = 2A$
The time difference between the crest and the trough of the current waveform is half of its total time period.
Substituting the values we get,
${V_2} = 0.5 \times \dfrac{2}{{\dfrac{1}{{2 \times 50}}}} = 100V$
Therefore, the crest voltage induced in the secondary is $100V$
Hence, the correct answer is C.
Note In a transformer, for low frequency operation laminated iron core is used but for radio frequency operation, to minimize eddy current while maintaining high flux density ferrite core is used.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Displacement-Time Graph and Velocity-Time Graph for JEE
Degree of Dissociation and Its Formula With Solved Example for JEE
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics