Answer
Verified
112.5k+ views
Hint: The heat produced during the flow of current through the conductor due to collision of electrons inside the conductor moving under the applied potential difference is absorbed by the conductor which leads to increases in its temperature.
Formula used:
$H = {I^2}Rt$ Where $H$ is heat produced $I$ is the current $R$ is the resistance and $t$ is time.
$H = ms\Delta T$ Where $m$ is the mass of the body $s$ is the body’s specific heat capacity and $\Delta T$ is the change in temperature
Complete step by step solution:
In the question the temperature of the conductor is increasing as current flows through it as heat is produced during the flow of current through the conductor due to collision of electrons inside the conductor moving under the applied potential difference, this heat is absorbed by the conductor which leads to a rise in its temperature.
We know that,
$ \Rightarrow H = {I^2}Rt$
$H$ is heat produced $I$ is the current $R$ is the resistance and $t$ is time.
Let the resistance of wire be $R$ initially current flowing through conductor be $I$and heat produced be${H_1}$and in the second case the current flowing through conductor be $2I$and heat produced be${H_2}$
Hence,
\[ \Rightarrow {H_1} = {I^2}Rt\]
$ \Rightarrow {H_2} = {(2I)^2}Rt$
As the heat is produced during the flow of current is the heat is absorbed by the conductor,
(We know that $H = ms\Delta T$ where$H$ is heat produced, $m$is the mass of the body, $s$ is body’s specific heat capacity, and $\Delta T$ is the change in temperature)
\[ \Rightarrow {H_1} = ms\Delta {T_1}\] ($\Delta {T_1}$is the initial change in temperature)
\[ \Rightarrow {H_2} = ms\Delta {T_2}\]($\Delta {T_2}$is the initial change in temperature)
From the above equations, we can assert that,
\[ \Rightarrow {I^2}Rt = ms\Delta {T_1}\]
\[ \Rightarrow {(2I)^2}Rt = ms\Delta {T_2}\]
Taking the ratio of the above two we get,
\[ \Rightarrow \dfrac{{{I^2}Rt}}{{{{(2I)}^2}Rt}} = \dfrac{{ms\Delta {T_1}}}{{ms\Delta {T_2}}}\]
\[ \Rightarrow \dfrac{1}{4} = \dfrac{{\Delta {T_1}}}{{\Delta {T_2}}}\]
$ \Rightarrow \Delta {T_2} = 4\Delta {T_1}$
It’s given in the question that $\Delta {T_1}$ is\[{5^0}C\].
$ \Rightarrow \Delta {T_2} = {20^0}C$
Hence the correct answer is (C)\[{20^0}C\].
Note: As current flows through the conductor its temperature increases and this also increases the resistance of the wire but this increase is very small thus we have neglected this change in the resistance of the wire in the calculation done above.
Formula used:
$H = {I^2}Rt$ Where $H$ is heat produced $I$ is the current $R$ is the resistance and $t$ is time.
$H = ms\Delta T$ Where $m$ is the mass of the body $s$ is the body’s specific heat capacity and $\Delta T$ is the change in temperature
Complete step by step solution:
In the question the temperature of the conductor is increasing as current flows through it as heat is produced during the flow of current through the conductor due to collision of electrons inside the conductor moving under the applied potential difference, this heat is absorbed by the conductor which leads to a rise in its temperature.
We know that,
$ \Rightarrow H = {I^2}Rt$
$H$ is heat produced $I$ is the current $R$ is the resistance and $t$ is time.
Let the resistance of wire be $R$ initially current flowing through conductor be $I$and heat produced be${H_1}$and in the second case the current flowing through conductor be $2I$and heat produced be${H_2}$
Hence,
\[ \Rightarrow {H_1} = {I^2}Rt\]
$ \Rightarrow {H_2} = {(2I)^2}Rt$
As the heat is produced during the flow of current is the heat is absorbed by the conductor,
(We know that $H = ms\Delta T$ where$H$ is heat produced, $m$is the mass of the body, $s$ is body’s specific heat capacity, and $\Delta T$ is the change in temperature)
\[ \Rightarrow {H_1} = ms\Delta {T_1}\] ($\Delta {T_1}$is the initial change in temperature)
\[ \Rightarrow {H_2} = ms\Delta {T_2}\]($\Delta {T_2}$is the initial change in temperature)
From the above equations, we can assert that,
\[ \Rightarrow {I^2}Rt = ms\Delta {T_1}\]
\[ \Rightarrow {(2I)^2}Rt = ms\Delta {T_2}\]
Taking the ratio of the above two we get,
\[ \Rightarrow \dfrac{{{I^2}Rt}}{{{{(2I)}^2}Rt}} = \dfrac{{ms\Delta {T_1}}}{{ms\Delta {T_2}}}\]
\[ \Rightarrow \dfrac{1}{4} = \dfrac{{\Delta {T_1}}}{{\Delta {T_2}}}\]
$ \Rightarrow \Delta {T_2} = 4\Delta {T_1}$
It’s given in the question that $\Delta {T_1}$ is\[{5^0}C\].
$ \Rightarrow \Delta {T_2} = {20^0}C$
Hence the correct answer is (C)\[{20^0}C\].
Note: As current flows through the conductor its temperature increases and this also increases the resistance of the wire but this increase is very small thus we have neglected this change in the resistance of the wire in the calculation done above.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking