A ball is bouncing down a flight of stairs. The coefficient of restitution is $e$ . The height of each step is $d$ and the ball descends one step each bounce. After each bounce it rebounds to a height $h$ above the next lower step. The height is large compared with the width of the step so that the impacts are effectively head-on. Find the relationship between $h$ and $d$.
(A) $h = \dfrac{d}{{1 - {e^2}}}$
(B) $h = \dfrac{d}{{1 + {e^2}}}$
(C) $h = \dfrac{d}{{1 + {e^{}}}}$
(D) $h = \sqrt {\dfrac{d}{{1 - {e^2}}}} $
Answer
Verified
120k+ views
Hint We are here asked to find the relationship between $h$ and $d$. Also we are given with the coefficient of restitution. Thus, it would be easier to go through the path of restitution analysis.
Formulae Used:
${v^2} - {u^2} = 2ah$
Where, $v$ is the final velocity of the particle, $u$ is the initial velocity of the particle, $a$ is the acceleration on it and $h$ is the height of the particle.
$e = \dfrac{{{v_2}}}{{{v_1}}}$
Where, $e$ is the coefficient of restitution, ${v_2}$ is the velocity of the particle after collision and ${v_1}$ is the velocity of the particle before collision.
Complete Step By Step Solution
Here,
For the first bounce of the ball on the top most step,
${v_1}^2 - {0^2} = 2ah$
We took ${u_1} = 0$ as the initial velocity of the ball was zero.
Thus, we get
$2ah = {v_1}^2 \cdot \cdot \cdot \cdot (1)$
Now,
After the first bounce, the new height of the ball is $(h - d)$,
Thus, we get
$2a(h - d) = {v_2}^2 \cdot \cdot \cdot \cdot (2)$
Now,
Applying$\dfrac{{Equation(1)}}{{Equation(2)}}$, we get
$\dfrac{h}{{h - d}} = \dfrac{{{v_1}^2}}{{{v_2}^2}}$
After further evaluation, we get
$\dfrac{{{v_2}}}{{{v_1}}} = \sqrt {\dfrac{{h - d}}{h}} $
But,
$e = \dfrac{{{v_2}}}{{{v_1}}}$
Thus, equating both, we get
$e = \sqrt {\dfrac{{h - d}}{h}} $
Further, we get
${e^2} = \dfrac{{h - d}}{h} \Rightarrow h{e^2} = h - d \Rightarrow h = \dfrac{d}{{1 - {e^2}}}$
Hence, the correct option is (A).
Note We have used the route of using the fundamental formula for coefficient of restitution as that allows us to directly relate all the given parameters. Moreover, in the given case it is given that the collision is head on which means completely elastic, but if the collision was inelastic, then the evaluation will be somewhat different.
Formulae Used:
${v^2} - {u^2} = 2ah$
Where, $v$ is the final velocity of the particle, $u$ is the initial velocity of the particle, $a$ is the acceleration on it and $h$ is the height of the particle.
$e = \dfrac{{{v_2}}}{{{v_1}}}$
Where, $e$ is the coefficient of restitution, ${v_2}$ is the velocity of the particle after collision and ${v_1}$ is the velocity of the particle before collision.
Complete Step By Step Solution
Here,
For the first bounce of the ball on the top most step,
${v_1}^2 - {0^2} = 2ah$
We took ${u_1} = 0$ as the initial velocity of the ball was zero.
Thus, we get
$2ah = {v_1}^2 \cdot \cdot \cdot \cdot (1)$
Now,
After the first bounce, the new height of the ball is $(h - d)$,
Thus, we get
$2a(h - d) = {v_2}^2 \cdot \cdot \cdot \cdot (2)$
Now,
Applying$\dfrac{{Equation(1)}}{{Equation(2)}}$, we get
$\dfrac{h}{{h - d}} = \dfrac{{{v_1}^2}}{{{v_2}^2}}$
After further evaluation, we get
$\dfrac{{{v_2}}}{{{v_1}}} = \sqrt {\dfrac{{h - d}}{h}} $
But,
$e = \dfrac{{{v_2}}}{{{v_1}}}$
Thus, equating both, we get
$e = \sqrt {\dfrac{{h - d}}{h}} $
Further, we get
${e^2} = \dfrac{{h - d}}{h} \Rightarrow h{e^2} = h - d \Rightarrow h = \dfrac{d}{{1 - {e^2}}}$
Hence, the correct option is (A).
Note We have used the route of using the fundamental formula for coefficient of restitution as that allows us to directly relate all the given parameters. Moreover, in the given case it is given that the collision is head on which means completely elastic, but if the collision was inelastic, then the evaluation will be somewhat different.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
Sign up for JEE Main 2025 Live Classes - Vedantu
JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address
Trending doubts
JEE Mains 2025: Check Important Dates, Syllabus, Exam Pattern, Fee and Updates
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main Chemistry Exam Pattern 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More