
A ball is suspended by a thread from the ceiling of a car. The brakes are applied and the speed of the car changes uniformly from $\mathop {36kmh}\nolimits^{ - 1} $ to zero in $5s$ . The angle by which the ball deviates from the vertical (\[g = 10m{s^{ - 2}}\]) is:
(A) \[ta{n^{ - 1}}(\frac{1}{3})\]
(B) \[si{n^{ - 1}}(\frac{1}{5})\]
(C) \[ta{n^{ - 1}}(\frac{1}{5})\]
(D) \[co{t^{ - 1}}(\frac{1}{3})\]
Answer
141k+ views
Hint We will first find out the acceleration of the car. Finally we will find out the angle it makes with the vertical.
Formulae Used: $a = \frac{{(v - u)}}{t}$
Where, $a$ is the acceleration of the body, $v$ is the final velocity, $u$ is the initial velocity and $t$ is the time taken by the body.
Complete Step By Step Solution
Here,
\[u = {\text{ }}36{\text{ }}km{h^{ - 1}} = 10m{s^{ - 1}}\]
\[v = 0km{h^{ - 1}} = 0m{s^{ - 1}}\]
\[t = 5s\]
Now,
\[{a_{car}} = \frac{{(0 - 10)}}{5}\]
Now,
\[{a_{}} = - 2m{s^{ - 2}}\]
\[\begin{gathered}
tan\theta = \frac{a}{g} = \frac{2}{{10}} = \frac{1}{5} \\
\\
\end{gathered} \]
Thus, the answer turns out to be \[\theta = ta{n^{ - 1}}(\frac{1}{5})\] which is (C).
But,
Also,
If we take
\[\begin{gathered}
sin\theta = \frac{2}{{10}} = \frac{1}{5} \\
\\
\end{gathered} \]
\[ \Rightarrow \theta = si{n^{ - 1}}(\frac{1}{5})\]
Hence, (B) is also correct.
Note We got the value of \[sin\theta \] , we took \[{a_{net}} = \sqrt {{a^2} + {g^2}} \] an d value turns out to be \[10m{s^{ - 2}}\]. Also, we took only the magnitude as it only plays the role to form the angle.
Formulae Used: $a = \frac{{(v - u)}}{t}$
Where, $a$ is the acceleration of the body, $v$ is the final velocity, $u$ is the initial velocity and $t$ is the time taken by the body.
Complete Step By Step Solution
Here,
\[u = {\text{ }}36{\text{ }}km{h^{ - 1}} = 10m{s^{ - 1}}\]
\[v = 0km{h^{ - 1}} = 0m{s^{ - 1}}\]
\[t = 5s\]
Now,
\[{a_{car}} = \frac{{(0 - 10)}}{5}\]
Now,
\[{a_{}} = - 2m{s^{ - 2}}\]
\[\begin{gathered}
tan\theta = \frac{a}{g} = \frac{2}{{10}} = \frac{1}{5} \\
\\
\end{gathered} \]
Thus, the answer turns out to be \[\theta = ta{n^{ - 1}}(\frac{1}{5})\] which is (C).
But,
Also,
If we take
\[\begin{gathered}
sin\theta = \frac{2}{{10}} = \frac{1}{5} \\
\\
\end{gathered} \]
\[ \Rightarrow \theta = si{n^{ - 1}}(\frac{1}{5})\]
Hence, (B) is also correct.
Note We got the value of \[sin\theta \] , we took \[{a_{net}} = \sqrt {{a^2} + {g^2}} \] an d value turns out to be \[10m{s^{ - 2}}\]. Also, we took only the magnitude as it only plays the role to form the angle.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
