
A beam of light of wavelength 400nm and power 1.55mW is directed at the cathode of a photoelectric cell. If only $10\% $ of the incident photons effectively produce a photoelectron, then find current due to these electrons. (Given $hc = 1240eV - nm$,$e = 1.6 \times {10^{ - 19}}C$
(A) $5\mu A$
(B) $40\mu A$
(C) $50\mu A$
(D) $11.4\mu A$
Answer
225.3k+ views
Hint: The energy of an incident photon is given by the expression, $E = \dfrac{{hc}}{\lambda }$. This value gives the number of electrons photons which can be produced per second, which also gives the number of electrons emitted per second. This can be further used to calculate the value of photocurrent by the relation $I = e \times n$.
Formula used:
$E = \dfrac{{hc}}{\lambda }$
$\dfrac{c}{\lambda } = \upsilon $
$P = nE$
$I = e \times n$
Where, E is the energy of an incident photon
h is the Planck’s constant which is equal to $6.62 \times {10^{ - 34}}{m^2}kg/s$
c is the speed of light which is equal to $3 \times {10^8}m/s$
$\lambda $ is the wavelength of electromagnetic wave used
$\upsilon $ is the frequency
$e$ is the charge on electron which is equal to $1.6 \times {10^{ - 19}}C$
$I$ is the value of photocurrent.
P is the power
n is the number of photons produced per second
Step by step answer
During the photoelectric effect, the photon strikes the atom with an energy E which is a function of its frequency.
$E = h\upsilon $
Since in the question, frequency is not given, the term $\dfrac{c}{\lambda } = \upsilon $ is used.
So the energy of the photon,
$E = \dfrac{{hc}}{\lambda }$
The value of hc is given $1240eV$
We know that $1eV = 1.6 \times {10^{ - 19}}J$
Therefore,
$hc = 1240 \times 1.6 \times {10^{ - 19}}J - nm$
($nm$refers to nanometers)
$hc = 1984 \times {10^{ - 19}}J - nm$
$E = \dfrac{{hc}}{\lambda } = \dfrac{{1984 \times {{10}^{ - 19}}J - nm}}{{400nm}} = 4.96 \times {10^{ - 19}}J$
Therefore the number of the photons is given by-
$n = \dfrac{P}{E}$
Where P is the power given in the question as, $1.55mW$
Writing in SI units-
$n = \dfrac{{1.55 \times {{10}^{ - 3}}}}{{4.96 \times {{10}^{ - 19}}}} = 3.125 \times {10^{15}}$
Number of photons used to produce the photoelectric current are only $10\% $so,
$n = 3.125 \times {10^{15}} \times \dfrac{{10}}{{100}}{s^{ - 1}}$
$n = 3.125 \times {10^{14}}$
This also the number of electrons which produce current,
Now the photocurrent ‘I’ can be calculated as-
$I = e \times n$
Given, $e = 1.6 \times {10^{ - 19}}C$
$I = 1.6 \times 3.125 \times {10^{14}} \times {10^{ - 19}}$
$I = 5 \times {10^{ - 5}}A$
$I = 50 \times {10^{ - 6}}A
Therefore option (c) is correct.
Note: The energy of a photon can be written as a function of its wavelength but it is not the ideal expression because the wavelength of the light can be changed. When the light passes through a medium, its speed decreases significantly, as the frequency of the light remains constant, its wavelength changes. Similar effect occurs in the Doppler effect as well, where red-shift (increase in wavelength) and blue-shift (decrease in wavelength) is observed.
Formula used:
$E = \dfrac{{hc}}{\lambda }$
$\dfrac{c}{\lambda } = \upsilon $
$P = nE$
$I = e \times n$
Where, E is the energy of an incident photon
h is the Planck’s constant which is equal to $6.62 \times {10^{ - 34}}{m^2}kg/s$
c is the speed of light which is equal to $3 \times {10^8}m/s$
$\lambda $ is the wavelength of electromagnetic wave used
$\upsilon $ is the frequency
$e$ is the charge on electron which is equal to $1.6 \times {10^{ - 19}}C$
$I$ is the value of photocurrent.
P is the power
n is the number of photons produced per second
Step by step answer
During the photoelectric effect, the photon strikes the atom with an energy E which is a function of its frequency.
$E = h\upsilon $
Since in the question, frequency is not given, the term $\dfrac{c}{\lambda } = \upsilon $ is used.
So the energy of the photon,
$E = \dfrac{{hc}}{\lambda }$
The value of hc is given $1240eV$
We know that $1eV = 1.6 \times {10^{ - 19}}J$
Therefore,
$hc = 1240 \times 1.6 \times {10^{ - 19}}J - nm$
($nm$refers to nanometers)
$hc = 1984 \times {10^{ - 19}}J - nm$
$E = \dfrac{{hc}}{\lambda } = \dfrac{{1984 \times {{10}^{ - 19}}J - nm}}{{400nm}} = 4.96 \times {10^{ - 19}}J$
Therefore the number of the photons is given by-
$n = \dfrac{P}{E}$
Where P is the power given in the question as, $1.55mW$
Writing in SI units-
$n = \dfrac{{1.55 \times {{10}^{ - 3}}}}{{4.96 \times {{10}^{ - 19}}}} = 3.125 \times {10^{15}}$
Number of photons used to produce the photoelectric current are only $10\% $so,
$n = 3.125 \times {10^{15}} \times \dfrac{{10}}{{100}}{s^{ - 1}}$
$n = 3.125 \times {10^{14}}$
This also the number of electrons which produce current,
Now the photocurrent ‘I’ can be calculated as-
$I = e \times n$
Given, $e = 1.6 \times {10^{ - 19}}C$
$I = 1.6 \times 3.125 \times {10^{14}} \times {10^{ - 19}}$
$I = 5 \times {10^{ - 5}}A$
$I = 50 \times {10^{ - 6}}A
Therefore option (c) is correct.
Note: The energy of a photon can be written as a function of its wavelength but it is not the ideal expression because the wavelength of the light can be changed. When the light passes through a medium, its speed decreases significantly, as the frequency of the light remains constant, its wavelength changes. Similar effect occurs in the Doppler effect as well, where red-shift (increase in wavelength) and blue-shift (decrease in wavelength) is observed.
Recently Updated Pages
JEE Main 2025-26 Experimental Skills Mock Test – Free Practice

JEE Main 2025-26: Magnetic Effects of Current & Magnetism Mock Test

JEE Main 2025-26 Atoms and Nuclei Mock Test – Free Practice Online

JEE Main Mock Test 2025-26: Optics Chapter Practice Online

The work done in slowly moving an electron of charge class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Atomic Structure for Beginners

Understanding Electromagnetic Waves and Their Importance

