
A beam of light of wavelength 400nm and power 1.55mW is directed at the cathode of a photoelectric cell. If only $10\% $ of the incident photons effectively produce a photoelectron, then find current due to these electrons. (Given $hc = 1240eV - nm$,$e = 1.6 \times {10^{ - 19}}C$
(A) $5\mu A$
(B) $40\mu A$
(C) $50\mu A$
(D) $11.4\mu A$
Answer
131.7k+ views
Hint: The energy of an incident photon is given by the expression, $E = \dfrac{{hc}}{\lambda }$. This value gives the number of electrons photons which can be produced per second, which also gives the number of electrons emitted per second. This can be further used to calculate the value of photocurrent by the relation $I = e \times n$.
Formula used:
$E = \dfrac{{hc}}{\lambda }$
$\dfrac{c}{\lambda } = \upsilon $
$P = nE$
$I = e \times n$
Where, E is the energy of an incident photon
h is the Planck’s constant which is equal to $6.62 \times {10^{ - 34}}{m^2}kg/s$
c is the speed of light which is equal to $3 \times {10^8}m/s$
$\lambda $ is the wavelength of electromagnetic wave used
$\upsilon $ is the frequency
$e$ is the charge on electron which is equal to $1.6 \times {10^{ - 19}}C$
$I$ is the value of photocurrent.
P is the power
n is the number of photons produced per second
Step by step answer
During the photoelectric effect, the photon strikes the atom with an energy E which is a function of its frequency.
$E = h\upsilon $
Since in the question, frequency is not given, the term $\dfrac{c}{\lambda } = \upsilon $ is used.
So the energy of the photon,
$E = \dfrac{{hc}}{\lambda }$
The value of hc is given $1240eV$
We know that $1eV = 1.6 \times {10^{ - 19}}J$
Therefore,
$hc = 1240 \times 1.6 \times {10^{ - 19}}J - nm$
($nm$refers to nanometers)
$hc = 1984 \times {10^{ - 19}}J - nm$
$E = \dfrac{{hc}}{\lambda } = \dfrac{{1984 \times {{10}^{ - 19}}J - nm}}{{400nm}} = 4.96 \times {10^{ - 19}}J$
Therefore the number of the photons is given by-
$n = \dfrac{P}{E}$
Where P is the power given in the question as, $1.55mW$
Writing in SI units-
$n = \dfrac{{1.55 \times {{10}^{ - 3}}}}{{4.96 \times {{10}^{ - 19}}}} = 3.125 \times {10^{15}}$
Number of photons used to produce the photoelectric current are only $10\% $so,
$n = 3.125 \times {10^{15}} \times \dfrac{{10}}{{100}}{s^{ - 1}}$
$n = 3.125 \times {10^{14}}$
This also the number of electrons which produce current,
Now the photocurrent ‘I’ can be calculated as-
$I = e \times n$
Given, $e = 1.6 \times {10^{ - 19}}C$
$I = 1.6 \times 3.125 \times {10^{14}} \times {10^{ - 19}}$
$I = 5 \times {10^{ - 5}}A$
$I = 50 \times {10^{ - 6}}A
Therefore option (c) is correct.
Note: The energy of a photon can be written as a function of its wavelength but it is not the ideal expression because the wavelength of the light can be changed. When the light passes through a medium, its speed decreases significantly, as the frequency of the light remains constant, its wavelength changes. Similar effect occurs in the Doppler effect as well, where red-shift (increase in wavelength) and blue-shift (decrease in wavelength) is observed.
Formula used:
$E = \dfrac{{hc}}{\lambda }$
$\dfrac{c}{\lambda } = \upsilon $
$P = nE$
$I = e \times n$
Where, E is the energy of an incident photon
h is the Planck’s constant which is equal to $6.62 \times {10^{ - 34}}{m^2}kg/s$
c is the speed of light which is equal to $3 \times {10^8}m/s$
$\lambda $ is the wavelength of electromagnetic wave used
$\upsilon $ is the frequency
$e$ is the charge on electron which is equal to $1.6 \times {10^{ - 19}}C$
$I$ is the value of photocurrent.
P is the power
n is the number of photons produced per second
Step by step answer
During the photoelectric effect, the photon strikes the atom with an energy E which is a function of its frequency.
$E = h\upsilon $
Since in the question, frequency is not given, the term $\dfrac{c}{\lambda } = \upsilon $ is used.
So the energy of the photon,
$E = \dfrac{{hc}}{\lambda }$
The value of hc is given $1240eV$
We know that $1eV = 1.6 \times {10^{ - 19}}J$
Therefore,
$hc = 1240 \times 1.6 \times {10^{ - 19}}J - nm$
($nm$refers to nanometers)
$hc = 1984 \times {10^{ - 19}}J - nm$
$E = \dfrac{{hc}}{\lambda } = \dfrac{{1984 \times {{10}^{ - 19}}J - nm}}{{400nm}} = 4.96 \times {10^{ - 19}}J$
Therefore the number of the photons is given by-
$n = \dfrac{P}{E}$
Where P is the power given in the question as, $1.55mW$
Writing in SI units-
$n = \dfrac{{1.55 \times {{10}^{ - 3}}}}{{4.96 \times {{10}^{ - 19}}}} = 3.125 \times {10^{15}}$
Number of photons used to produce the photoelectric current are only $10\% $so,
$n = 3.125 \times {10^{15}} \times \dfrac{{10}}{{100}}{s^{ - 1}}$
$n = 3.125 \times {10^{14}}$
This also the number of electrons which produce current,
Now the photocurrent ‘I’ can be calculated as-
$I = e \times n$
Given, $e = 1.6 \times {10^{ - 19}}C$
$I = 1.6 \times 3.125 \times {10^{14}} \times {10^{ - 19}}$
$I = 5 \times {10^{ - 5}}A$
$I = 50 \times {10^{ - 6}}A
Therefore option (c) is correct.
Note: The energy of a photon can be written as a function of its wavelength but it is not the ideal expression because the wavelength of the light can be changed. When the light passes through a medium, its speed decreases significantly, as the frequency of the light remains constant, its wavelength changes. Similar effect occurs in the Doppler effect as well, where red-shift (increase in wavelength) and blue-shift (decrease in wavelength) is observed.
Recently Updated Pages
Young's Double Slit Experiment Step by Step Derivation

Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Clemmenson and Wolff Kishner Reductions for JEE

Sir C V Raman won the Nobel Prize in which year A 1928 class 12 physics JEE_Main

In Bohrs model of the hydrogen atom the radius of the class 12 physics JEE_Main

JEE Main 2025 Session 2 Registration Open – Apply Now! Form Link, Last Date and Fees

Other Pages
JEE Advanced 2024 Syllabus Weightage

CBSE Date Sheet 2025 Class 12 - Download Timetable PDF for FREE Now

JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

CBSE Class 10 Hindi Sample Papers with Solutions 2024-25 FREE PDF

CBSE Board Exam Date Sheet Class 10 2025 (OUT): Download Exam Dates PDF

CBSE Class 10 Hindi Course-B Syllabus 2024-25 - Revised PDF Download
