Answer
Verified
112.8k+ views
Hint: The energy of an incident photon is given by the expression, $E = \dfrac{{hc}}{\lambda }$. This value gives the number of electrons photons which can be produced per second, which also gives the number of electrons emitted per second. This can be further used to calculate the value of photocurrent by the relation $I = e \times n$.
Formula used:
$E = \dfrac{{hc}}{\lambda }$
$\dfrac{c}{\lambda } = \upsilon $
$P = nE$
$I = e \times n$
Where, E is the energy of an incident photon
h is the Planck’s constant which is equal to $6.62 \times {10^{ - 34}}{m^2}kg/s$
c is the speed of light which is equal to $3 \times {10^8}m/s$
$\lambda $ is the wavelength of electromagnetic wave used
$\upsilon $ is the frequency
$e$ is the charge on electron which is equal to $1.6 \times {10^{ - 19}}C$
$I$ is the value of photocurrent.
P is the power
n is the number of photons produced per second
Step by step answer
During the photoelectric effect, the photon strikes the atom with an energy E which is a function of its frequency.
$E = h\upsilon $
Since in the question, frequency is not given, the term $\dfrac{c}{\lambda } = \upsilon $ is used.
So the energy of the photon,
$E = \dfrac{{hc}}{\lambda }$
The value of hc is given $1240eV$
We know that $1eV = 1.6 \times {10^{ - 19}}J$
Therefore,
$hc = 1240 \times 1.6 \times {10^{ - 19}}J - nm$
($nm$refers to nanometers)
$hc = 1984 \times {10^{ - 19}}J - nm$
$E = \dfrac{{hc}}{\lambda } = \dfrac{{1984 \times {{10}^{ - 19}}J - nm}}{{400nm}} = 4.96 \times {10^{ - 19}}J$
Therefore the number of the photons is given by-
$n = \dfrac{P}{E}$
Where P is the power given in the question as, $1.55mW$
Writing in SI units-
$n = \dfrac{{1.55 \times {{10}^{ - 3}}}}{{4.96 \times {{10}^{ - 19}}}} = 3.125 \times {10^{15}}$
Number of photons used to produce the photoelectric current are only $10\% $so,
$n = 3.125 \times {10^{15}} \times \dfrac{{10}}{{100}}{s^{ - 1}}$
$n = 3.125 \times {10^{14}}$
This also the number of electrons which produce current,
Now the photocurrent ‘I’ can be calculated as-
$I = e \times n$
Given, $e = 1.6 \times {10^{ - 19}}C$
$I = 1.6 \times 3.125 \times {10^{14}} \times {10^{ - 19}}$
$I = 5 \times {10^{ - 5}}A$
$I = 50 \times {10^{ - 6}}A
Therefore option (c) is correct.
Note: The energy of a photon can be written as a function of its wavelength but it is not the ideal expression because the wavelength of the light can be changed. When the light passes through a medium, its speed decreases significantly, as the frequency of the light remains constant, its wavelength changes. Similar effect occurs in the Doppler effect as well, where red-shift (increase in wavelength) and blue-shift (decrease in wavelength) is observed.
Formula used:
$E = \dfrac{{hc}}{\lambda }$
$\dfrac{c}{\lambda } = \upsilon $
$P = nE$
$I = e \times n$
Where, E is the energy of an incident photon
h is the Planck’s constant which is equal to $6.62 \times {10^{ - 34}}{m^2}kg/s$
c is the speed of light which is equal to $3 \times {10^8}m/s$
$\lambda $ is the wavelength of electromagnetic wave used
$\upsilon $ is the frequency
$e$ is the charge on electron which is equal to $1.6 \times {10^{ - 19}}C$
$I$ is the value of photocurrent.
P is the power
n is the number of photons produced per second
Step by step answer
During the photoelectric effect, the photon strikes the atom with an energy E which is a function of its frequency.
$E = h\upsilon $
Since in the question, frequency is not given, the term $\dfrac{c}{\lambda } = \upsilon $ is used.
So the energy of the photon,
$E = \dfrac{{hc}}{\lambda }$
The value of hc is given $1240eV$
We know that $1eV = 1.6 \times {10^{ - 19}}J$
Therefore,
$hc = 1240 \times 1.6 \times {10^{ - 19}}J - nm$
($nm$refers to nanometers)
$hc = 1984 \times {10^{ - 19}}J - nm$
$E = \dfrac{{hc}}{\lambda } = \dfrac{{1984 \times {{10}^{ - 19}}J - nm}}{{400nm}} = 4.96 \times {10^{ - 19}}J$
Therefore the number of the photons is given by-
$n = \dfrac{P}{E}$
Where P is the power given in the question as, $1.55mW$
Writing in SI units-
$n = \dfrac{{1.55 \times {{10}^{ - 3}}}}{{4.96 \times {{10}^{ - 19}}}} = 3.125 \times {10^{15}}$
Number of photons used to produce the photoelectric current are only $10\% $so,
$n = 3.125 \times {10^{15}} \times \dfrac{{10}}{{100}}{s^{ - 1}}$
$n = 3.125 \times {10^{14}}$
This also the number of electrons which produce current,
Now the photocurrent ‘I’ can be calculated as-
$I = e \times n$
Given, $e = 1.6 \times {10^{ - 19}}C$
$I = 1.6 \times 3.125 \times {10^{14}} \times {10^{ - 19}}$
$I = 5 \times {10^{ - 5}}A$
$I = 50 \times {10^{ - 6}}A
Therefore option (c) is correct.
Note: The energy of a photon can be written as a function of its wavelength but it is not the ideal expression because the wavelength of the light can be changed. When the light passes through a medium, its speed decreases significantly, as the frequency of the light remains constant, its wavelength changes. Similar effect occurs in the Doppler effect as well, where red-shift (increase in wavelength) and blue-shift (decrease in wavelength) is observed.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
IIT JEE Main Maths 2025: Syllabus, Important Chapters, Weightage
Ammonium Hydroxide Formula - Chemical, Molecular Formula and Uses
Difference Between Distance and Displacement: JEE Main 2024
Difference Between CNG and LPG: JEE Main 2024
Difference between soap and detergent
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking